首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肝脏是一个特殊的器官,不仅因为它独特的解剖结构和生理特征,而且它还具有无限的再生能力。在各种动物模型中,应用病毒或非病毒载体将肝细胞生长因子等基因转入体内,能增强肝再生能力,这就是肝脏基因转染技术在肝再生研究中的应用。未来的研究目标就是消除病毒载体的毒副作用和增加非病毒载体的转染率,这也是目前肝内基因转染技术中面临的主要难题;另一个研究目标就是用受体介导基因靶向肝转染,使转入基因在肝细胞中特异高表达。这些研究成果将有助于肝再生基因机制研究,以及将来临床基因治疗提供参考。  相似文献   

2.
Sickle cell disease and beta-thalassemia are excellent candidates for gene therapy since transfer of a single gene into hematopoietic stem cells should theoretically elicit a therapeutic response. Initial attempts at gene therapy of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the extensive research on human immunodeficiency virus-1 due to the acquired immune deficiency syndrome pandemic, researchers have realized that this lentivirus, engineered to be devoid of any pathogenic elements, can be an effective gene transfer vector. This review discusses the gene therapy strategy for the hemoglobinopathies and outlines why lentiviral-derived vectors are particularly suited for this type of application, keeping past failures at gene therapy of these hemoglobinopathies in mind. Development, improvement, and methods for preparation of lentiviral-derived vectors are examined. Recently published results of successful gene therapy treatment of beta-thalassemic and sickle cell diseased mice using lentiviral-derived vectors are described. Finally, criticisms and future directions of lentiviral-based biotechnology are considered.  相似文献   

3.
高效遗传转化技术是植物重要性状功能基因鉴定的前提和转基因育种的基础.随着纳米生物技术的发展,以纳米载体介导的植物转基因技术已显示出巨大的应用潜力.综述了国内外应用于植物纳米载体的类型、与外源基因的结合方式以及传输细胞的原理,重点阐述了影响纳米基因载体性能与转化效率的重要因素,以及纳米载体介导外源基因转化植物细胞的方法,...  相似文献   

4.
5.
There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trip2 promoters. The Coprinus cinereus β-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp 1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with ALG-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.  相似文献   

6.
Myotonic dystrophy type 2 (DM2) is caused by the extreme expansion of the repeating tetranucleotide CCTG*CAGG sequence from <30 repeats in normal individuals to approximately 11,000 for the full mutation in certain patients. This repeat is in intron 1 of the zinc finger protein 9 gene on chromosome 3q21. Since prior work demonstrated that CTG*CAG and GAA*TTC triplet repeats (responsible for DM1 and Friedreich's ataxia, respectively) can expand by genetic recombination, we investigated the capacity of the DM2 tetranucleotide repeats to also expand during this process. Both gene conversion and unequal crossing over are attractive mechanisms to effect these very large expansions. (CCTG*CAGG)n (where n=30, 75, 114 or 160) repeats showed high recombination crossover frequencies (up to 27-fold higher than the non-repeating control) in an intramolecular plasmid system in Escherichia coli. Furthermore, a distinct orientation effect was observed where orientation II (CAGG on the leading strand template) was more prone to recombine. Expansions of up to double the length of the tetranucleotide repeats were found. Also, the repeating tetranucleotide sequence was more prone to expansions (to give lengths longer than a single repeating tract) than deletions as observed for the CTG*CAG and GAA*TTC repeats. We determined that the DM2 tetranucleotide repeats showed a lower thermodynamic stability when compared to the DM1 trinucleotide repeats, which could make them better targets for DNA repair events, thus explaining their expansion-prone behavior. Genetic studies in SOS-repair mutants revealed high frequencies of recombination crossovers although the SOS-response itself was not induced. Thus, the genetic instabilities of the CCTG*CAGG repeats may be mediated by a recombination-repair mechanism that is influenced by DNA structure.  相似文献   

7.
Advanced approaches to the synthesis and reconstruction of genetic material developed in the Institutes of Molecular Biology and Genetics during the past years are summarized. The evolution of methods for oligonucleotide synthesis and scopes for their use in gene production are discussed. The principles of localised mutagenesis methods developed in the Institute are described, such as: a) mutagenesis directed to the regulatory gene regions; b) segment-localized mutagenesis; c) mutagenesis directed by phosphotriester analogues of oligonucleotides. Examples of employing these methods for induction of regulatory mutants of phage lambda, production of fused genes, mutant interferon genes, construction of new DNA vectors, construction of hybrid H1-H3 subtype haemagglutinine gene of influenza virus etc. are presented. The approach to in vivo site-directed mutagenesis is experimentally substantiated.  相似文献   

8.
Although many methods are available for introducing genes into the mammalian germ line, none is ideal for genetic manipulation of livestock or primates. These organisms produce relatively few offspring in each reproductive cycle and they have long generation times. For these reasons, a recent report that adenovirus vectors can efficiently insert genes into the mouse germ line by embryo infection is of considerable interest. Adenovirus vectors have a high cloning capacity, can be produced in high titers, and can infect a wide variety of cell types. We have investigated in more detail the potential for such vectors to infect embryos and integrate their DNA into the genome. We exposed mouse embryos to adenovirus vectors that express bacterial beta-galactosidase (LacZ), and studied expression in the preimplantation period, toxicity of the vectors, and the frequency with which fetuses and pups integrate vector DNA. Our findings indicate that fully functional adenovirus receptor does not appear until the two-cell stage of development. Successful infection is associated with high toxicity, such that viral titers must be balanced to achieve high infection with tolerable levels of toxicity. Screening of 94 animals after embryo infection revealed a single positive polymerase chain reaction signal, which is indicative of the presence of the lacZ gene. This finding could not be confirmed by Southern blotting, which indicates that the founder animal was a genetic mosaic for the exogenous DNA. We conclude from these experiments that adenovirus gene transfer vectors are not readily usable for germ line gene insertion.  相似文献   

9.
Dhar MK  Kaul S  Kour J 《Plant cell reports》2011,30(5):799-806
Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, “top-down” or “bottom-up” have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals.  相似文献   

10.
The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner.  相似文献   

11.
Several gene delivery vehicles are being developed for somatic gene therapy and each of these vectors has unique properties which makes them appropriate for different human disease applications. Recombinant adeno-associated viral (rAAV) vectors are proving themselves to be safe and efficacious for the long-term expression of proteins and correction of genetic diseases following a single administration. The increasing number of tissues and diseases being targeted with rAAV vectors demonstrates their versatility and has resulted in different approaches for enhancing vector performance. Improving the methods for large-scale manufacturing, and accumulating safety and efficacy data in animals and humans are areas of intense research.  相似文献   

12.
Molecular medicine has entered a high-tech age that provides curative treatments of complex genetic diseases through genetically engineered cellular medicinal products. Their clinical implementation requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective and economically viable manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient non-viral gene delivery approaches that are prevalent in ongoing pre-clinical and translational research. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here we review several recent refinements of the system, including the development of optimized transposons and hyperactive SB variants, the vectorization of transposase and transposon as mRNA and DNA minicircles (MCs) to enhance performance and facilitate vector production, as well as a detailed understanding of SB’s genomic integration and biosafety features. This review also provides a perspective on the regulatory framework for clinical trials of gene delivery with SB, and illustrates the path to successful clinical implementation by using, as examples, gene therapy for age-related macular degeneration (AMD) and the engineering of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy.  相似文献   

13.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   

14.
15.
Gene therapy for cystic fibrosis (CF) has focused on correcting electrolyte transport in airway epithelia. However, success has been limited by the failure of vectors to attach and enter into airway epithelia, and may require redirecting vectors to targets on the apical membrane of airway cells that mediate these functions. The G-protein-coupled P2Y2 receptor (P2Y2-R) is abundantly expressed on the airway lumenal surface and internalizes into coated pits upon agonist activation. We tested whether a small-molecule-agonist (UTP) could direct vectors to P2Y2-R and mediate attachment, internalization, and gene transfer. Fluorescein-UTP studies demonstrated that P2Y2-R agonists internalized with their receptor, and biotinylated UTP (BUTP) mediated P2Y2-R-specific internalization of fluorescently labeled streptavidin (SAF) or SAF conjugated to biotinylated Cy3 adenoviral-vector (BCAV). BUTP conjugated to BCAV mediated P2Y2-R-specific gene transfer in (1) adenoviral-resistant A9 and polarized MDCK cells by means of heterologous P2Y2-R, and (2) well-differentiated human airway epithelial cells by means of endogenous P2Y2-R. Targeting vectors with small-molecule-ligands to apical membrane G-protein-coupled receptors may be a feasible approach for successful CF gene therapy.  相似文献   

16.
The concept of gene therapy was envisioned soon after the emergence of restriction endonucleases and subcloning of mammalian genes in phage and plasmids. Over the ensuing decades, vectors were developed, including nonviral methods, integrating virus vectors (gammaretrovirus and lentivirus), and non-integrating virus vectors (adenovirus, adeno-associated virus, and herpes simplex virus vectors). Preclinical data demonstrated potential efficacy in a broad range of animal models of human diseases, but clinical efficacy in humans remained elusive in most cases, even after decades of experience in over 1000 trials. Adverse effects from gene therapy have been observed in some cases, often because of viral vectors retaining some of the pathogenic potential of the viruses upon which they are based. Later generation vectors have been developed in which the safety and/or the efficiency of gene transfer has been improved. Most recently this work has involved alterations of vector envelope or capsid proteins either by insertion of ligands to target specific receptors or by directed evolution. The disease targets for gene therapy are multiple, but the most promising data have come from monogenic disorders. As the number of potential targets for gene therapy continues to increase, and a substantial number of trials continue with both the standard and the later generation vector systems, it is hoped that a therapeutic niche for gene therapy will emerge in the coming decades.  相似文献   

17.
Gene therapy is the purposeful delivery of genetic material to somatic cells for the purpose of treating disease or biomedical investigation. Either viral or non-viral vector methods can be used. The risk of collateral exposure of laboratory animal care personnel to gene therapy vectors is dependent on a number of factors. These factors are intrinsic to the gene therapy vector (the vehicle for genetic conveyance), product encoded by the genetic construct delivered, method of delivery, and immune status of the recipient. The component risks of gene therapy experiments can be analyzed to surmise the overall relative risk of the experiment. Knowledge of the components that contribute potential hazardous risk to a study can assist animal care staff in identifying area(s) where prudent practices should be focused. Gene therapy experiments involving viral vectors are generally performed at either biosafety level 2 or 3. The objective of this review is to report on various components of gene therapy experiments, focusing on characteristics of viral and non-viral vectors, to assist the laboratory animal science community in determining prudent biosafety practices.  相似文献   

18.
The early status of strain development for the production of interleukin (IL)-6, IL-8, IL-10, and interferon (IFN) gamma is described. The general approach to generating such strains was to amplify gene sequences encoding the mature forms of the various cytokines by PCR from commercially available cDNA sources. The design of the amplificates allowed an in-frame fusion to an MFalpha1 leader segment contained in two basic expression vectors, pFPMT121-MFalpha1 and pTPSMT-MFalpha1. The two vectors differ in that one harbors the methanol-inducible FMD promoter and the other the constitutive TPS1 promoter as control elements for heterologous gene expression. The most advanced process development example is that of IFNalpha-2a. Here, the MOX promoter derived from another key gene of methanol metabolism is used for expression control. The successful development of a production process for Hansenula polymorpha-derived IFNalpha-2a is summarized. This was achieved by combining genetic engineering of suitable production strains with improved processing capabilities for the secreted cytokine, and by purification procedures from cultures grown in yeast extract-peptone-glycerol-based media.  相似文献   

19.
Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions in trans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications.  相似文献   

20.
The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors, into the adult rat brain and spinal cord to obtain reproducible and successful transduction of neural tissue. Surgical and injection procedures are based on the extensive experience of our laboratory to deliver viral vectors to the adult rat CNS and have been optimized over the years. First, a brief overview is presented on the use and potential of viral vectors to treat neurological disorders or trauma of the CNS. Next, methods to deliver AAV vectors to the rat brain and spinal cord are described in great detail with the intent of providing a practical guide to potential users. Finally, some data on the experimental outcomes following AAV vector-mediated gene transfer to the adult rat CNS are presented as is a brief discussion on both the advantages and limitations of AAV vectors as tools for somatic gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号