首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about human prehistory in the central African lowland tropical forest due to a paucity of archaeological evidence. Here we report results from our archaeological investigations of a late Holocene site in the northeast Congo Basin, with emphasis on a single skeleton from the rock shelter site of Matangai Turu Northwest, in the Ituri Forest, Democratic Republic of Congo. The skeleton dates from approximately 810 BP (1235 calibrated AD) and is associated with Later Stone Age lithics, animal bone and shell remains from wild taxa, fruit endocarps from forest trees, phytoliths from tropical forest plants, Late Iron Age ceramics, and a single iron artifact. Phytolith analysis indicates that the habitat was dense tropical forest, without evidence of domesticated food.  相似文献   

2.
The ecology and distribution of Quercus aegilops ssp. brantii and the associated Pistacia atlantica var. mutica and P. khinjuk are examined as a basis for explaining the Late Quaternary history of the forest in the Zagros mountains. The three species are tolerant of aridity and low temperatures but sensitive to heavy snowfall. In most of the area, summer rain does not occur. Forest expansion is generally limited by the inability of seedlings to survive the four-month summer drought. Pollen diagrams from Lake Zeribar, Kurdistan show the absence of trees during the last glacial period and the migration of forest into the region between 10 000 and 5 500 B.P. This has been interpreted as indicating aridity during the Pleistocene with gradually increasing precipitation in the late glacial and Holocene. However, the sensitivity of these species to snow and their tolerance of low overall precipitation implicate higher snowfall rather than lower precipitation as the cause of absence during the Pleistocene. The inability of seedlings to survive the present summer-dry conditions suggests that summer rainfall, and not higher total precipitation, was the factor that finally allowed migration. These conclusions are supported by independent evidence of increased winter precipitation during the pleniglacial and a period of summer rainfall but low annual precipitation during forest expansion.  相似文献   

3.
Tropical forest animals are at high risk worldwide as a result of over-exploitation and forest clearing. Zooarchaeological studies of animal use by the ancient Maya of the southern lowland regions of Guatemala, Honduras, Belize, and Mexico provide long-term historical information on animal populations under conditions of human population growth and climatic change that is valuable to both archaeology and conservation biology. In this paper, zooarchaeological data from 35 chronologically defined faunal sub-samples recovered from 25 ancient Maya archaeological sites are used to assess the effects of ancient hunting on animal populations of the Maya region between the Preclassic and Colonial periods (2000 BC–AD 1697). The variations in species abundance are used as a proxy for describing changes in ancient Maya hunting practices and hunted animal populations, interpreted on the basis of hunting efficiency models from foraging ecology. A significant reduction in the proportion of large mammals, particularly Odocoileus virginianus, in zooarchaeological assemblages between the Late Classic (AD 600–850) and Terminal Classic/Postclassic periods (AD 850–1519) suggest that over-hunting during the Late Classic may have led to a reduction in availability of these animals to the ancient Maya hunters in the later periods. This finding is discussed in relation to important social and environmental variations to evaluate the impact of hunting and other factors such as forest clearance and climate on ancient animal populations in the Maya region.  相似文献   

4.
Previous genetic analyses have demonstrated that two phonic types of one of the most common European bats, the Common pipistrelle, belong to distinct species, although they are almost identical morphologically (45 kHz Pipistrellus pipistrellus and 55 kHz Pipistrellus pygmaeus). To reconstruct the history of the species complex and explain the codistribution of both forms in Europe and the Mediterranean, we performed phylogenetic analysis based on a 402-bp portion of the cytochrome b gene. Particular attention was paid to the eastern and southern parts of the range where no data were available. We found further distinctive allopatric haplotypes from Libya and Morocco. The difference of about 6-7% described in the Libyan population suggests the occurrence of a new species in the southern Mediterranean. The species status of Moroccan population is also discussed. The phylogeographic patterns obtained and analysis of fossil records support the hypothesis of expansion of both species into Europe from the Mediterranean region during the Holocene. The allopatric speciation model fits our data best. The paleobiographic scenario envisaged is corroborated also by molecular clock estimations and correlations with Late Neogene environmental changes in the Mediterranean region which ended with the Messinian salinity crisis.  相似文献   

5.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

6.
Abstract:Biatora britannica sp. nov. is described from Wales. The species is the sorediate sister taxon of the Madeiran Biatora hertelii. The close relationship is supported by the presence of the hymenial pigment Hertelii-green, which is hitherto known only from these two species. Molecular data from the nuclear ITS-region of 14 Biatora -species renders further support for the close relationship of both species. Sterile, sorediate material from the British Isles earlier referred to B. efflorescens may in fact belong to B. britannica.  相似文献   

7.
Dating of the human-ape splitting by a molecular clock of mitochondrial DNA   总被引:64,自引:0,他引:64  
Summary A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized leastsquares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3±11.7, 13.3±1.5, 10.9±1.2, 3.7±0.6, and 2.7±0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the bipedal creatureAustralopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a protochimpanzee after the former had developed bipedalism.  相似文献   

8.
Ambient light and the circadian clock have been shown to be capable of acting either independently or in an interrelated fashion to regulate the expression of conidiation in the ascomycete fungusNeurospora crassa. Recently several molecular correlates of the circadian clock have been identified in the form of the morning-specific clock-controlled genesccg-1 andccg-2. In this paper we report studies on the regulation ofccg-1, an abundantly expressed gene displaying complex regulation. Consistent with an emerging consensus for clock-controlled genes and conidiation genes inNeurospora, we report thatccg-1 expression is induced by light, and show that this induction is independent of the direct effects of light on the circadian clock. Although circadian regulation of the gene is lost in strains lacking a functional clock, expression ofccg-1 is still not constitutive, but rather fluctuates in concert with changes in developmental potential seen in such strains. Light induction ofccg-1 requires the products of theNeurospora wc-1 andwc-2 genes, but surprisingly the requirement forwc-2 is suppressed in conditional mutants ofcot-1, a gene that encodes a cAMP-dependent protein kinase. These data provide insight into a complex regulatory web, involving at least circadian clock control, light control, metabolic control, and very probably developmental regulation, that governs the expression ofccg-1.  相似文献   

9.
10.
The Anisophylleaceae comprise 29-34 species of shrubs and trees occurring in lowland forests and swamps in tropical Africa, Asia, and South America. These species are placed in four genera with disjunct geographic distributions; Anisophyllea has 25-30 species in South America, Africa, and Malesia; Combretocarpus has one species in Sumatra and Borneo; Poga one species in equatorial Africa; and Polygonanthus two in the Amazon Basin. Here we use a phylogeny based on six nuclear and plastid loci sequenced for 15 species representing the four genera to infer their relationships and the relative and absolute ages of the range disjunctions. Combretocarpus is sister to the other three genera, and Polygonanthus then sister to Poga and Anisophyllea. Ansiophyllea, represented by 12 species from all three continents, is monophyletic. A relaxed Bayesian clock calibrated with the oldest fossils from a relevant outgroup, Tetramelaceae, suggests that the disjunctions between Combretocarpus, Poga, and Polygonanthus date back to the Cretaceous, Mid-, and Upper Eocene, whereas the intercontinental disjunctions within Anisophyllea appear to date back only some 22-23 million years and thus probably result from long-distance dispersal.  相似文献   

11.
The rising and setting of the sun marks a transition between starkly contrasting environmental conditions for vegetative life. Given these differing diurnal and nocturnal environmental factors and the inherent regularity of the transition between the two, it is perhaps unsurprising that plants have developed an internal timing mechanism (known as a circadian clock) to allow modulation of gene expression and metabolism in response to external cues. Entrainment of the circadian clock, primarily via the detection of changes in light and temperature, maintains synchronization between the surrounding environment and the endogenous clock mechanism. In this review, recent advances in our understanding of the molecular workings of the plant circadian clock are discussed as are the input pathways necessary for entrainment of the clock machinery.  相似文献   

12.
We compared the impacts on forest regeneration of introduced sika (Cervus nippon) and red (Cervus elaphus) deer in New Zealand. Plot data were used to compare mountain beech (Nothofagus solandri var. cliffortioides) regeneration between a region with sika deer, and four regions without sika deer. All regions surveyed had red deer present. In the region where sika deer had been present for more than a decade, there was evidence of poor mountain beech seedling regeneration. In the four regions without sika deer, there was evidence of a strong regenerative response at stands with low occupancy by trees. When compared to larger deer species, sika deer have a digestive morphology allowing greater dietary versatility, which may result in them impeding forest regeneration where red deer do not. In contrast to mountain beech, some small-leaved shrub species may have been competitively advantaged by intensive browsing from sika deer. This is contra to a current view that small-leaved shrub species with interlacing branches were able to tolerate browsing from extinct ratite birds, but not introduced deer. Sika deer have been introduced into countries where other deer species are indigenous, such as Canada, Denmark, Great Britain, Czech Republic, Ireland and the United States of America. Because of their dietary advantage, sika deer may have a greater potential to impede forest regeneration and competitively exclude larger deer species, particularly at low basal area sites where impacts on tree regeneration are likely to be greatest.  相似文献   

13.
Phylogenetic relationships in a group of 21 African rodent species designated as the Praomys group (Murinae) were investigated using morphological characters and sequence data from the complete mitochondrial cytochrome b gene and nuclear IRBP gene fragment (840bp). The molecular results confirm the monophyly of the Praomys group, including the species Malacomys verschureni, while the other Malacomys species appear very divergent. The basal relationships within the Praomys group are poorly resolved, suggesting a rapid radiation at about 7-9 million years ago based on genetic divergence rates calibrated from the fossil record. Discrepancies between molecular and morphological results probably reflect of numerous convergences as well as variations in the rates of morphological evolution among lineages. Reconstructions of the ancestral character states suggest a savannah origin for the Praomys group, along with some morphological traits conserved by stasis in savannah taxa. At the same time, forest taxa seem to be characterized by an accelerated morphological evolution, with acquisition of convergent adaptive characters.  相似文献   

14.
Although it is well established that ectomycorrhizas improve the mineral nutrition of forest trees, there has been little evidence that they mediate uptake of divalent cations such as Mg. We grew nonmycorrhizal seedlings and seedlings mycorrhizal with Paxillus involutus Batsch in a sand culture system with two compartments separated by a 45-μm Nylon mesh. Hyphae, but not roots, can penetrate this net. Labeling the compartment only accessible to hyphae with 25Mg showed that hyphae of the ectomycorrhizal fungus Paxillus involutus transported Mg to their host plant. No label was found in nonmycorrhizal control plants. Our data support the idea that ectomycorrhizas are important for the Mg nutrition of forest trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Aim In this paper, I discuss the temporal and spatial aspects of historical biogeography and speciation in a widely distributed Holarctic subfamily of birds (Tetraoninae). Location Northern Holarctic. Results Using dated fossils, I calibrated the molecular clock for the mitochondrial control region at 7.23 ± 1.58% nucleotide divergence (maximum likelihood corrected) per million years. The data suggest that grouse (Tetraoninae) originated in the Middle Pliocene, 6.3 Ma. Grouse apparently originated in the northern part of western Nearctic, and Palearctic was colonized independently three times, first by the ancestor of all grouse in the Middle Pliocene, then by the ancestor of forest (Falcipennis, Tetrao and Lyrurus) and prairie (Centrocercus, Dendragapus and Tympanuchus) grouse in the Late Pliocene, and finally by the ancestral Lagopus in the Early Pleistocene. Only once Nearctic was colonized from Palearctic by a common ancestor of forest grouse. Sympatry and range symmetry were positively correlated with molecular divergence. These correlations suggest that peripatric isolation was the predominant mode of speciation throughout grouse history. Main conclusions Speciation events in grouse were driven by climatic oscillations of the Pliocene and Pleistocene. Isolation of small peripheral populations from widely distributed ancestors was the dominant mode of speciation in grouse. Isolations during interglacials both across Beringia, and in southern mountain areas when boreal habitats were restricted to high elevations, suggest an important role for vicariance in grouse speciation.  相似文献   

16.
A standardized analysis of palaeoecological data, in the form of six pollen sequences and forty- four radiocarbon ages, has permitted a region-wide reconstruction of Late Quaternary vegetation dynamics for the interlacustrine highlands of central Africa.
A landscape widely dominated by ericaceous scrub and grasslands, but also supporting sparse patches of open-canopied montane forest, possibly in those areas with a topography most favourable to the growth of trees, is indicated for the last glacial maximum of 18,000 yr bp . Major expansions in the extent of upper altitudinal forms of montane forest occurred from around 12,500 yr bp , while lower moist montane forest—the expected climax for much of the region today—did not become prominent until 11,000 yr bp to 10,000 yr bp . From the palaeoecological evidence at least, it appears that the major east Central forest refuge, proposed by some workers on the basis of current species' distribution patterns, did not extend to the eastern flanks of the Albertine Rift.
A late glacial–early Holocene transition is only fully chronicled in two of the sites. However, it appears that the expansion of lower montane forest had a time-transgressive pattern across the region, and was not simply from low to high altitude. The composition of forests during the early Holocene appears to have been different to that in the later stages of the present interglacial, as taxa presently associated with wetter and/or more open forest types were much more common. Pollen data also indicate that higher altitude parts of the interlacustrine highlands were more attractive to the earliest (possibly Bantu-speaking) farmers and metal-workers. There is evidence of wide-spread forest clearance around the beginning of the present millennium, possibly as a result of substantial changes in socio-economic conditions, and patterns of settlement, associated with the onset of the Late Iron Age.  相似文献   

17.
Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa.  相似文献   

18.
Tropical forests constitute some of the most diverse and complex terrestrial ecosystems on the planet. From the Miocene onward, they have acted as a backdrop to the ongoing evolution of our closest living relatives, the great apes, and provided the cradle for the emergence of early hominins, who retained arboreal physiological adaptations at least into the Late Pliocene. There also now exists growing evidence, from the Late Pleistocene onward, for tool‐assisted intensification of tropical forest occupation and resource extraction by our own species, Homo sapiens. However, between the Late Pliocene and Late Pleistocene there is an apparent gap in clear and convincing evidence for the use of tropical forests by hominins, including early members of our own genus. In discussions of Late Pliocene and Early Pleistocene hominin evolution, including the emergence and later expansion of Homo species across the globe, tropical forest adaptations tend to be eclipsed by open, savanna environments. Thus far, it is not clear whether this Early‐Middle Pleistocene lacuna in Homo‐rainforest interaction is real and representative of an adaptive shift with the emergence of our species or if it is simply reflective of preservation bias.  相似文献   

19.
Palaeoecological data are compared with output from climate-driven forest simulation models to separate human influence as a driver of vegetation dynamics from other drivers such as climatic change. The transition from Tilia cordata to Fagus sylvatica dominance in a small forest hollow in Denmark was not predicted by a climate-driven forest simulation model and could be ascribed to anthropogenic impact. This transition can be upscaled to a large region of north-west Europe and contributes to a data-model mismatch for the European distribution of Fagus 6,000 years ago. A data-model mismatch for Picea abies during the last few centuries in southern Scandinavia can also be attributed to anthropogenic impact. Combining pollen data and vegetation models can help with the important task of upscaling from the scale of the forest stand, where anthropogenic impact is readily detectable, to regions and continents, where it is more challenging to distinguish anthropogenic impact from the impacts of climatic change.  相似文献   

20.
The olfactory bulb (OB) of rodents has been suggested to possess a self-sustaining circadian oscillator which functions independent from the master circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. However, neither histology nor physiology of this extra-SCN clock is studied yet. In the present study, we examined circadian variation of major clock gene expressions in the OB and responsiveness to single photic stimuli. Here we show significant circadian variation in the expression of clock genes, Per1, Per2 and Bmal1 in the OB. Per1 and PER2 were mainly expressed in the mitral cell and granular cell layers of the OB. Light responsiveness of Per1 and Per2 expression was different in the OB from that in the parietal cortex. Both Per1 and Per2 are expressed in the OB only by l000 lux light pulse, whereas 100 lux light was enough to induce Per1 mRNA in the parietal cortex. Interestingly, even 1000 lux light failed to induce Per2 mRNA in the parietal cortex. These clock gene-specific and brain region-dependent responses to lights in the OB and parietal cortex suggest that single light stimulus induces various physiological functions in different brain areas via specific clock gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号