首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.  相似文献   

2.
The role of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in the phenomenon of inducer exclusion was examined in whole cells of Salmonella typhimurium which carried the genes of the Escherichia coli lactose operon on an episome. In the presence of the PTS substrate methyl alpha-D-glucopyranoside, the extent of accumulation of the lactose analog methyl beta-D-thiogalactopyranoside was reduced. A strain carrying a mutation in the gene for Enzyme I was hypersensitive to the PTS effect, while a crr mutant strain was completely resistant. Influx, efflux, and exchange of galactosides via the lactose "permease" were inhibited by methyl alpha-glucoside. This inhibition occurred in the presence of metabolic energy poisons, and therefore does not involve either the generation of metabolic energy or energy-coupling to the lactose transport system. When the cellular content of the lactose permease was increased by induction with isopropyl beta-D-thiogalactopyranoside, cells gradually became less sensitive to inducer exclusion. The extent of inhibition of methyl beta-thiogalactoside accumulation by methyl alpha-glucoside was shown to be dependent on the relative cellular content of the PTS and lactose system. The data were consistent with an hypothesis involving partial inactivation of galactoside transport due to interaction between a component of the PTS and the lactose permease. By examination of the effects of the PTS and lactose uptake and melibiose permease-mediated uptake of methyl beta-thiogalactoside, it was further shown that the manner in which inducer exclusion is expressed is independent on the routes available to the non-PTS sugar for exit from the cell.  相似文献   

3.
Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.  相似文献   

4.
Enteric bacteria have been previously shown to regulate the uptake of certain carbohydrates (lactose, maltose, and glycerol) by an allosteric mechanism involving the catalytic activities of the phosphoenolpyruvate-sugar phosphotransferase system. In the present studies, a ptsI mutant of Bacillus subtilis, possessing a thermosensitive enzyme I of the phosphotransferase system, was used to gain evidence for a similar regulatory mechanism in a gram-positive bacterium. Thermoinactivation of enzyme I resulted in the loss of methyl alpha-glucoside uptake activity and enhanced sensitivity of glycerol uptake to inhibition by sugar substrates of the phosphotransferase system. The concentration of the inhibiting sugar which half maximally blocked glycerol uptake was directly related to residual enzyme I activity. Each sugar substrate of the phosphotransferase system inhibited glycerol uptake provided that the enzyme II specific for that sugar was induced to a sufficiently high level. The results support the conclusion that the phosphotransferase system regulates glycerol uptake in B. subtilis and perhaps in other gram-positive bacteria.  相似文献   

5.
The phosphoglycerate transport system was employed to supply energy-depleted, lysozyme-treated Salmonella typhimurium cells with a continuous intracellular source of phosphoenolpyruvate. When the cells had been induced to high levels of the phosphoglycerate transport system, a low extracellular concentration of phosphoenolpyruvate (0.1 mM) half maximally stimulated uptake of methyl alpha-glucoside via the phosphoenolpyruvate:sugar phosphotransferase system. If the phosphoglycerate transport system was not induced before energy depletion, 100 times this concentration of phosphoenolpyruvate was required for half-maximal stimulation. Phosphoenolpyruvate could not be replaced by other energy sources if potassium fluoride (an inhibitor of enolase) was present. Inhibition of [14C]-glycerol uptake into energy-depleted cells by methyl alpha-glucoside was demonstrated. A concentration of phosphoenolpyruvate which stimulated methyl alpha-glucoside accumulation counteracted the inhibitory effect of the glucoside. In the presence of potassium fluoride, phosphoenolpyruvate could not be replaced by other energy sources. Inhibition of glycerol uptake by methyl alpha-glucoside in intact untreated cells was also counteracted by phosphoenolpyruvate, but several energy sources were equally effective; potassium fluoride was without effect. These and other results were interpreted in terms of a mechanism in which the relative proportions of the phosphorylated and nonphosphorylated forms of a cell constituent influence the activity of the glycerol transport system.  相似文献   

6.
Glucose is taken up in Bacillus subtilis via the phosphoenolpyruvate:glucose phosphotransferase system (glucose PTS). Two genes, orfG and ptsX, have been implied in the glucose-specific part of this PTS, encoding an Enzyme IIGlc and an Enzyme IIIGlc, respectively. We now show that the glucose permease consists of a single, membrane-bound, polypeptide with an apparent molecular weight of 80,000, encoded by a single gene which will be designated ptsG. The glucose permease contains domains that are 40-50% identical to the IIGlc and IIIGlc proteins of Escherichia coli. The B. subtilis IIIGlc domain can replace IIIGlc in E. coli crr mutants in supporting growth on glucose and transport of methyl alpha-glucoside. Mutations in the IIGlc and IIIGlc domains of the B. subtilis ptsG gene impaired growth on glucose and in some cases on sucrose. ptsG mutants lost all methyl alpha-glucoside transport but retained part of the glucose-transport capacity. Residual growth on glucose and transport of glucose in these ptsG mutants suggested that yet another uptake system for glucose existed, which is either another PT system or regulated by the PTS. The glucose PTS did not seem to be involved in the regulation of the uptake or metabolism of non-PTS compounds like glycerol. In contrast to ptsl mutants in members of the Enterobacteriaceae, the defective growth of B. subtilis ptsl mutants on glycerol was not restored by an insertion in the ptsG gene which eliminated IIGlc. Growth of B. subtilis ptsG mutants, lacking IIGlc, was not impaired on glycerol. From this we concluded that neither non-phosphorylated nor phosphorylated IIGlc was acting as an inhibitor or an activator, respectively, of glycerol uptake and metabolism.  相似文献   

7.
The sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose Enzyme II complex of the phosphotransferase system has been analyzed kinetically. Initial rates of phosphoryl transfer from glucose-6-P to methyl alpha-glucopyranoside were determined with butanol/urea-extracted membranes from Salmonella typhimurium strains. The kinetic mechanism was shown to be Bi-Bi Sequential, indicating that the Enzyme II possesses nonoverlapping binding sites for sugar and sugar phosphate. Binding of the two substrates appears to occur in a positively cooperative fashion. A mutant with a defective glucose Enzyme II was isolated which transported methyl alpha-glucoside and glucose with reduced maximal velocities and higher Km values. In vitro kinetic studies of the transphosphorylation reaction catalyzed by the mutant enzyme showed a decrease in maximal velocity and increases in the Km values for both the sugar and sugar phosphate substrates. These results are consistent with the conclusion that a single Enzyme II complex catalyzes both transport and transphosphorylation of its sugar substrates.  相似文献   

8.
We report that in Escherichia coli, chemotaxis to sugars transported by the phosphotransferase system is mediated by adenylate cyclase, the nucleotide cyclase linked to the phosphotransferase system. We conclude that adenylate cyclase is required in this chemotaxis pathway because mutations in the cyclase gene (cya) eliminate or impair the response to phosphotransferase system sugars, even though other components of the phosphotransferase system known to be required for the detection of these sugars are relatively unaffected by such mutations. Moreover, merely supplying the mutant bacteria with the products of this enzyme, cyclic AMP and cyclic GMP, does not restore the chemotactic response. Because a residual chemotactic response is observed in certain strains with residual cyclic GMP synthesis but no cyclic AMP synthesis, it appears that the guanylate cyclase activity rather than the adenylate cyclase activity of the enzyme may be required for chemotaxis to sugars transported by the phosphotransferase system. Mutations in the cyclic nucleotide phosphodiesterase gene, which increase the level of both cyclic AMP and cyclic GMP, also reduce chemotaxis to these sugars. Therefore, it appears that control of the level of a cyclic nucleotide is critical for the chemotactic response to phosphotransferase system sugars.  相似文献   

9.
The Enzymes II of the PEP:carbohydrate phosphotransferase system (PTS) specific for N-acetylglucosamine (IINag) and beta-glucosides (IIBgl) contain C-terminal domains that show homology with Enzyme IIIGlc of the PTS. We investigated whether one or both of the Enzymes II could substitute functionally for IIIGlc. The following results were obtained: (i) Enzyme IINag, synthesized from either a chromosomal or a plasmid-encoded nagE+ gene could replace IIIGlc in glucose, methyl alpha-glucoside and sucrose transport via the corresponding Enzymes II. An Enzyme IINag with a large deletion in the N-terminal domain but with an intact C-terminal domain could also replace IIIGlc in IIGlc-dependent glucose transport. (ii) After decryptification of the Escherichia coli bgl operon, Enzyme IIBgl could substitute for IIIGlc. (iii) Phospho-HPr-dependent phosphorylation of methyl alpha-glucoside via IINag/IIGlc is inhibited by antiserum against IIIGlc as is N-acetylglucosamine phosphorylation via IINag. (iv) In strains that contained the plasmid which coded for IINag, a protein band with a molecular weight of 62,000 D could be detected with antiserum against IIIGlc. We conclude from these results that the IIIGlc-like domain of Enzyme IINag and IIBgl can replace IIIGlc in IIIGlc-dependent carbohydrate transport and phosphorylation.  相似文献   

10.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

11.
Changes in dilution rate did not elicit large and systematic changes in cellular cyclic AMP levels in Escherichia coli grown in a chemostat under carbon or phosphate limitation. However, the technical difficulties of measuring low levels of cellular cyclic AMP in the presence of a large background of extracellular cyclic AMP precluded firm conclusions in this point. The net rate of cyclic AMP synthesis increased exponentially with increasing dilution rate through either the entire range of dilution rates examined (phosphate limitation) or a substantial part of the range (lactose and glucose limitations). Thus, it is probable that growth rate regulates the synthesis of adenylate cyclase. The maximum rate of net cyclic AMP synthesis was greater under lactose than under glucose limitation, which is consistent with the notion that the uptake of phosphotransferase sugars is more inhibitory to adenylate cyclase than the uptake of other carbon substrates. Phosphate-limited cultures exhibited the lowest rate of net cyclic AMP synthesis, which could be due to the role of phosphorylated metabolites in the regulation of adenylate cyclase activity. Under all growth conditions examined, greater than 99.9% of the cyclic AMP synthesized was found in the culture medium. The function of this excretion, which consumed up to 9% of the total energy available to the cell and which evidently resulted from elaborate regulatory mechanisms, remains entirely unknown.  相似文献   

12.
Defects in phosphotransferase chemotaxis in cya and cpd mutants previously cited as evidence of a cyclic GMP or cyclic AMP intermediate in signal transduction were not reproduced in a study of chemotaxis in Escherichia coli and Salmonella typhimurium. In cya mutants, which lack adenylate cyclase, the addition of cyclic AMP was required for synthesis of proteins that were necessary for phosphotransferase transport and chemotaxis. However, the induced cells retained normal phosphotransferase chemotaxis after cyclic AMP was removed. Phosphotransferase chemotaxis was normal in a cpd mutant of S. typhimurium that has elevated levels of cyclic GMP and cyclic AMP. S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase. After preincubation with cyclic AMP, the crr mutants were deficient in enzyme II glucose-mediated transport and chemotaxis, but other chemotactic responses were normal. It is concluded that cyclic GMP does not determine the frequency of tumbling and is probably not a component of the transduction pathway. The only known role of cyclic AMP is in the synthesis of some proteins that are subject to catabolite repression.  相似文献   

13.
We investigated the claim (J. Daniel, J. Bacteriol. 157:940-941, 1984) that nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system is required for full synthesis of bacterial cyclic AMP (cAMP). In crp strains of Salmonella typhimurium, cAMP synthesis by intact cells was regulated by the phosphorylation state of enzyme IIIGlc. Introduction of either a pstHI deletion mutation or a crr::Tn10 mutation resulted in a low level of cAMP synthesis. In contrast, crp strains containing a leaky pstI mutation exhibited a high level of cAMP synthesis which was inhibited by phosphotransferase system carbohydrates. From these results, we conclude that phosphorylated enzyme IIIGlc rather than nonphosphorylated enzyme IIIGlc is required for full cAMP synthesis.  相似文献   

14.
15.
We have investigated the effect of oxidizing agents on methyl alpha-glucoside phosphorylation by the Escherichia coli phosphotransferase system (PTS). Oxidizing agents inhibited methyl alpha-glucoside phosphorylation at low methyl alpha-glucoside concentrations, and the degree of inhibition was shown to decrease with increasing concentrations of methyl alpha-glucoside. Results of studies with mutant bacteria and substrate analogues of the glucose and mannose enzymes II showed that contrary to the interpretation of Robillard and Konings [Robillard, G. T., & Konings, W. N. (1981) Biochemistry 20, 5025-5032] the apparent change in the Km value for methyl alpha-glucoside phosphorylation induced by sulfhydryl oxidation is not due to the formation of a low-affinity, oxidized form of the glucose enzyme II. Rather, the results are explained by the presence of two phosphotransferase systems that phosphorylate methyl alpha-glucoside with different affinities and that are differentially sensitive to oxidizing agents. The low Km system corresponds to the glucose enzyme II, which is strongly inhibited by potassium ferricyanide, phenazine methosulfate, and plumbagin. The high Km system corresponds to the mannose enzyme II, which is less sensitive to inhibition by these oxidizing agents. This differential sensitivity to inhibition by oxidizing agents can account for the apparent Km change for methyl alpha-glucoside phosphorylation reported by Robillard and Konings. The physiological significance of sulfhydryl oxidation in the enzymes II of the PTS has yet to be ascertained.  相似文献   

16.
Transport of trehalose in Salmonella typhimurium.   总被引:10,自引:4,他引:6       下载免费PDF全文
We have studied trehalose uptake in Salmonella typhimurium and the possible involvement of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in this process. Two transport systems could recognize and transport trehalose, the mannose PTS and the galactose permease. Uptake of trehalose via the latter system required that it be expressed constitutively (due to a galR or galC mutation). Introduction of a ptsM mutation, resulting in a defective IIMan/IIIMan system, in S. typhimurium strains that grew on trehalose abolished growth on trehalose. A ptsG mutation, eliminating IIGlc of the glucose PTS, had no effect. In contrast, a crr mutation that resulted in the absence of IIIGlc of the glucose PTS prevented growth on trehalose. The inability of crr and also cya mutants to grow on trehalose was due to lowered intracellular cyclic AMP synthesis, since addition of extracellular cyclic AMP restored growth. Subsequent trehalose metabolism could be via a trehalose phosphate hydrolase, if trehalose phosphate was formed via the PTS, or trehalase. Trehalose-grown cells contained trehalase activity, but we could not detect phosphoenolpyruvate-dependent phosphorylation of trehalose in toluenized cells.  相似文献   

17.
18.
The phosphoenolpyruvate-D-glucose phosphotransferase system of Enterobacteriaceae is thought to regulate the synthesis and activity of a number of catabolite uptake systems, including those for maltose, lactose, and glycerol, via the phosphorylation state of one of its components, IIIGlc. We have investigated the proposal by Kornberg and co-workers (FEBS Lett. 117(Suppl.):K28-K36, 1980) that not IIIGlc, but an unknown protein, the product of the iex gene, is responsible for the exclusion of the above-mentioned compounds from the cell. The iex mutant HK738 of Escherichia coli contains normal amounts of IIIGlc as measured by specific antibodies, in contrast to crr mutants that lack IIIGlc. The IIIGlc of the iex strain functions normally in glucose and methyl alpha-glucoside transport, and the specific activity in in vitro phosphorylation is approximately 60% of that of the parent. The IIIGlc activity of the iex strain is, however, heat labile, in contrast to the parental IIIGlc, suggesting that the mutant contains an altered IIIGlc. This is supported by the observation that IIIGlc from the iex strain cannot bind to the lactose carrier. Thus it cannot inhibit the carrier, and this explains why the uptake of non-phosphotransferase system compounds in an iex strain is resistant to phosphotransferase system sugars. The introduction of a plasmid containing a wild-type crr+ allele into the iex strain restores the iex phenotype to that of the iex+ parent. The IIIGlc produced from the plasmid in the iex strain is heat stable and binds normally to the lactose carrier. These results lead to the conclusion that the iex mutation is most likely allelic with crr and results in an altered, temperature-sensitive IIIGlc that is still able to function D-glucose and methyl alpha-glucoside uptake and phosphorylation and in the activation of adenylate cyclase, but is unable to bind to and inhibit the lactose carrier.  相似文献   

19.
A Salmonella typhimurium mutant lacking Enzyme I and HPr, general proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), but producing homologues EI(Fructose) and FPr constitutively, did not grow in minimal medium supplemented with non-PTS sugars (melibiose, glycerol, and maltose) in the absence of any trace of Luria-Bertani broth; adding cyclic AMP allowed growth. On melibiose, rapid growth began only when melibiose permease activity had reached a threshold level. Wild-type cultures reached this level within about 2 h, but the mutant only after a 12-14 h lag period, and then only when cyclic AMP had been added to the medium. On a mixture of melibiose and a PTS sugar, permease was undetectable in either the wild type or mutant until the PTS sugar had been exhausted. Permease then appeared, increasing with time, but in the mutant it never reached the threshold allowing rapid growth on melibiose unless cyclic AMP had been added. On rich medium supplemented with melibiose or glycerol, the mutant produced lower (30%) levels of melibiose permease or glycerol kinase compared with the wild type. We propose that poor phosphorylation of the regulatory protein Enzyme IIA(Glucose), leading to constitutive inducer exclusion and catabolite repression in this strain, accounts for these results.  相似文献   

20.
Adenylate cyclase (EC 4.6.1.1) and several carbohydrate permeases are inhibited by D-glucose and other substrates of the phosphoenolpyruvate:sugar phosphotransferase system. These activities are coordinately altered by sugar substrates of the phosphotransferase system in a variety of bacterial strains which contain differing cellular levels of the protein components of the phosphotransferase system: Enzyme I, a small heat-stable protein, and Enzyme II. It is suggested that the activities of adenylate cyclase and the permease proteins are subject to allosteric regulation and that the allosteric effector is a regulatory protein which can be phosphorylated by the phosphotransferase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号