首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17 allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli. This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.  相似文献   

2.
In Arabidopsis, activation of defense responses by flagellin is triggered by the specific recognition of the most conserved domain of flagellin, represented by the peptide flg22, in a process involving the FLS2 gene, which encodes a leucine-rich repeat serine/threonine protein kinase. We show here that the two fls2 mutant alleles, fls2-24 and fls2-17, which were shown previously to confer insensitivity to flg22, also cause impaired flagellin binding. These features are rescued when a functional FLS2 gene is expressed as a transgene in each of the fls2 mutant plants, indicating that FLS2 is necessary for flagellin binding. The point mutation of the fls2-17 allele lies in the kinase domain. A kinase carrying this missense mutation lacked autophosphorylation activity when expressed in Escherichia coli. This indicates that kinase activity is required for binding and probably affects the stability of the flagellin receptor complex. We further show that overexpression of the kinase-associated protein phosphatase (KAPP) in Arabidopsis results in plants that are insensitive to flagellin treatment, and we show reduced flg22 binding in these plants. Furthermore, using the yeast two-hybrid system, we show physical interaction of KAPP with the kinase domain of FLS2. These results suggest that KAPP functions as a negative regulator of the FLS2 signal transduction pathway and that the phosphorylation of FLS2 is necessary for proper binding and signaling of the flagellin receptor complex.  相似文献   

3.
Receptor-like kinases (RLKs) that function as pattern-recognition receptors (PRRs) play a key role in plant immune responses. The receptor recognizing flagellin in Arabidopsis, FLS2, is encoded by a membrane resident RLK. FLS2 is involved in preinvasive immunity against bacterial infection. Recent observations revealed that upon flagellin perception FLS2 accumulates in intracellular mobile vesicles and is then degraded. Reminiscent of ligand-induced receptor endocytosis in animals, FLS2 internalization is Wortmannin-sensitive. Mutation of the potentially phosphorylated residue threonine-867 impaired FLS2 endocytosis and flagellin-triggered responses. Furthermore, mutation of a PEST-motif abolished FLS2 endocytosis and downstream flagellin-elicited responses were affected. Thus, FLS2 endocytosis likely involves phosphorylation and ubiquitination events and appears to be interconnected with flagellin signaling. Similarly, TLR4, the mammalian PRR recognizing bacterial lipopolysaccharides (LPS) is internalized in a ligand specific manner. In this addendum, we discuss endocytic processes of plant RLKs focussing on FLS2 and provide a brief comparison with TLR4 endocytosis.Key words: Endocytosis, RLK, FLS2, flagellin, TLR4, LPS  相似文献   

4.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity.  相似文献   

5.
Much is known about the evolution of plant immunity components directed against specific pathogen strains: They show pervasive functional variation and have the potential to coevolve with pathogen populations. However, plants are effectively protected against most microbes by generalist immunity components that detect conserved pathogen-associated molecular patterns (PAMPs) and control the onset of PAMP-triggered immunity. In Arabidopsis thaliana, the receptor kinase flagellin sensing 2 (FLS2) confers recognition of bacterial flagellin (flg22) and activates a manifold defense response. To decipher the evolution of this system, we performed functional assays across a large set of A. thaliana genotypes and Brassicaceae relatives. We reveal extensive variation in flg22 perception, most of which results from changes in protein abundance. The observed variation correlates with both the severity of elicited defense responses and bacterial proliferation. We analyzed nucleotide variation segregating at FLS2 in A. thaliana and detected a pattern of variation suggestive of the rapid fixation of a novel adaptive allele. However, our study also shows that evolution at the receptor locus alone does not explain the evolution of flagellin perception; instead, components common to pathways downstream of PAMP perception likely contribute to the observed quantitative variation. Within and among close relatives, PAMP perception evolves quantitatively, which contrasts with the changes in recognition typically associated with the evolution of R genes.  相似文献   

6.
Flagellin, the main building block of the bacterial flagellum, acts as potent elicitor of defense responses in different plant species. Genetic analysis in Arabidopsis thaliana identified two distinct loci, termed FLS1 and FLS2, that are essential for perception of flagellin-derived elicitors. FLS2 was found to encode a leucine-rich repeat transmembrane receptor-like kinase with similarities to Toll-like receptors involved in the innate immune system of mammals and insects. Here we used a radiolabeled derivative of flg22, a synthetic peptide representing the elicitor-active domain of flagellin, to probe the interaction of flagellin with its receptor in A. thaliana. The high affinity binding site detected in intact cells and membrane preparations exhibited specificity for flagellin-derived peptides with biological activity as agonists or antagonists of the elicitor responses. Specific binding activity was measurable in all ecotypes of A. thaliana that show sensitivity to flagellin but was barely detectable in the flagellin-insensitive ecotype Ws-0 affected in FLS1. A strongly impaired binding of flagellin was observed also in several independent flagellin-insensitive mutants isolated from the flagellin-sensitive ecotype La-er. In particular, no binding was found in plants carrying a mutation in the LRR domain of FLS2. These data indicate that the formation of functional receptor-binding sites depends on genes encoded by both loci, FLS1 and FLS2. The tight correlation between the presence of the binding site and elicitor response provides strong evidence that this binding site acts as the physiological receptor of flagellin.  相似文献   

7.
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.  相似文献   

8.
In plant innate immunity, the surface‐exposed leucine‐rich repeat receptor kinases EFR and FLS2 mediate recognition of the bacterial pathogen‐associated molecular patterns EF‐Tu and flagellin, respectively. We identified the Arabidopsis stromal‐derived factor‐2 (SDF2) as being required for EFR function, and to a lesser extent FLS2 function. SDF2 resides in an endoplasmic reticulum (ER) protein complex with the Hsp40 ERdj3B and the Hsp70 BiP, which are components of the ER‐quality control (ER‐QC). Loss of SDF2 results in ER retention and degradation of EFR. The differential requirement for ER‐QC components by EFR and FLS2 could be linked to N‐glycosylation mediated by STT3a, a catalytic subunit of the oligosaccharyltransferase complex involved in co‐translational N‐glycosylation. Our results show that the plasma membrane EFR requires the ER complex SDF2–ERdj3B–BiP for its proper accumulation, and provide a demonstration of a physiological requirement for ER‐QC in transmembrane receptor function in plants. They also provide an unexpected differential requirement for ER‐QC and N‐glycosylation components by two closely related receptors.  相似文献   

9.
The Arabidopsis FLAGELLIN SENSITIVE2 (FLS2) protein is a leucine-rich repeat receptor-like kinase (LRR-RLK) that plays important roles in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The binding of bacterial flagellin, one of the PAMPs, to the extracellular domain of FLS2 leads to activation of signaling cascades resulting in activation or repression of a specific set of genes involved in plant defense. The mechanisms at the cell membrane that lead to the activation of this signalling pathway are, however, not fully understood. Recently, we have shown that after ligand-treatment the mobility of FLS2 in the cell membrane is reduced and that the activation of FLS2 does not involve its constitutive or ligand-dependent homodimerization. Our data together with recently published reports suggest that FLS2 activation involves its association with other proteins, including BRI1-associated kinase 1 (BAK1), another LRR-RLK, and localization to less mobile areas, probably lipid rafts, in a ligand-dependent manner to initiate PTI.Key words: PTI, BiFC, flg22, FLS2, FRAP, FRET, membrane protein, RLK  相似文献   

10.
Flagellin, the main building block of the bacterial flagellum, acts as a pathogen-associated molecular pattern triggering the innate immune response in animals and plants. In Arabidopsis thaliana, the Leu-rich repeat transmembrane receptor kinase FLAGELLIN SENSITIVE2 (FLS2) is essential for flagellin perception. Here, we demonstrate the specific interaction of the elicitor-active epitope flg22 with the FLS2 protein by chemical cross-linking and immunoprecipitation. The functionality of this receptor was further tested by heterologous expression of the Arabidopsis FLS2 gene in tomato (Lycopersicon esculentum) cells. The perception of flg22 in tomato differs characteristically from that in Arabidopsis. Expression of Arabidopsis FLS2 conferred an additional flg22-perception system on the cells of tomato, which showed all of the properties characteristic of the perception of this elicitor in Arabidopsis. In summary, these results show that FLS2 constitutes the pattern-recognition receptor that determines the specificity of flagellin perception.  相似文献   

11.
Plants possess two distinct types of immune receptor. The first type, pattern recognition receptors (PRRs), recognizes microbe-associated molecular patterns (MAMPs) and initiates pattern-triggered immunity (PTI) on recognition. FLS2 is a PRR, which recognizes a part of bacterial flagellin. The second type, resistance (R) proteins, recognizes pathogen effectors and initiates effector-triggered immunity (ETI) on recognition. RPM1, RPS2 and RPS5 are R proteins. Here, we provide evidence that FLS2 is physically associated with all three R proteins. Our findings suggest that signalling interactions occur between PTI and ETI at very early stages and/or that FLS2 forms a PTI signalling complex, some components of which are guarded by R proteins.  相似文献   

12.
The perception of microbial signal molecules is part of the strategy evolved by plants to survive attacks by potential pathogens. To gain a more complete understanding of the early signaling events involved in these responses, we used radioactive orthophosphate to pulse-label suspension-cultured cells of Arabidopsis in conjunction with two-dimensional gel electrophoresis and mass spectrometry to identify proteins that are phosphorylated rapidly in response to bacterial and fungal elicitors. One of these proteins, AtPhos43, and related proteins in tomato and rice, are phosphorylated within minutes after treatment with flagellin or chitin fragments. By measuring (32)P incorporation into AtPhos43 immunoprecipitated from extracts of elicitor-treated hormone and defense-response mutants, we found that phosphorylation of AtPhos43 after flagellin treatment but not chitin treatment is dependent on FLS2, a receptor-like kinase involved in flagellin perception. Induction by both elicitors is not dependent on salicylic acid or EDS1, a putative lipase involved in defense signaling.  相似文献   

13.
The flagellin receptor of Arabidopsis thaliana, At-FLAGELLIN SENSING2 (FLS2), has become a model for mechanistic and functional studies on plant immune receptors. Here, we started out with a comparison of At-FLS2 and the orthologous tomato (Solanum lycopersicum) receptor Sl-FLS2. Both receptors specifically responded to picomolar concentrations of the genuine flg22 ligand but proved insensitive to >10(6)-fold higher concentrations of CLV3 peptides that have recently been reported as a second type of ligand for At-FLS2. At-FLS2 and Sl-FLS2 exhibit species-specific differences in the recognition of shortened or sequence-modified flg22 ligands. To map the sites responsible for these species-specific traits on the FLS2 receptors, we performed domain swaps, substituting subsets of the 28 leucine-rich repeats (LRRs) in At-FLS2 with the corresponding LRRs from Sl-FLS2. We found that the LRRs 7 to 10 of Sl-FLS2 determine the high affinity of Sl-FLS2 for the core part RINSAKDD of flg22. In addition, we discovered importance of the LRRs 19 to 24 for the responsiveness to C-terminally modified flagellin peptides. These results indicate that ligand perception in FLS2 is a complex molecular process that involves LRRs from both the outermost and innermost LRRs of the FLS2 ectodomain.  相似文献   

14.
Dunning FM  Sun W  Jansen KL  Helft L  Bent AF 《The Plant cell》2007,19(10):3297-3313
Mutational, phylogenetic, and structural modeling approaches were combined to develop a general method to study leucine-rich repeat (LRR) domains and were used to identify residues within the Arabidopsis thaliana FLAGELLIN-SENSING2 (FLS2) LRR that contribute to flagellin perception. FLS2 is a transmembrane receptor kinase that binds bacterial flagellin or a flagellin-based flg22 peptide through a presumed physical interaction within the FLS2 extracellular domain. Double-Ala scanning mutagenesis of solvent-exposed beta-strand/beta-turn residues across the FLS2 LRR domain identified LRRs 9 to 15 as contributors to flagellin responsiveness. FLS2 LRR-encoding domains from 15 Arabidopsis ecotypes and 20 diverse Brassicaceae accessions were isolated and sequenced. FLS2 is highly conserved across most Arabidopsis ecotypes, whereas more diversified functional FLS2 homologs were found in many but not all Brassicaceae accessions. flg22 responsiveness was correlated with conserved LRR regions using Conserved Functional Group software to analyze structural models of the LRR for diverse FLS2 proteins. This identified conserved spatial clusters of residues across the beta-strand/beta-turn residues of LRRs 12 to 14, the same area identified by the Ala scan, as well as other conserved sites. Site-directed randomizing mutagenesis of solvent-exposed beta-strand/beta-turn residues across LRRs 9 to 15 identified mutations that disrupt flg22 binding and showed that flagellin perception is dependent on a limited number of tightly constrained residues of LRRs 9 to 15 that make quantitative contributions to the overall phenotypic response.  相似文献   

15.
Arabidopsis Flagellin sensitive2 (FLS2) is a transmembrane leucine-rich repeat receptor-like kinase, which recognizes a conserved 22 amino acid peptide (flg22) of bacterial flagellin and activates downstream defense signaling pathways resulting in enhanced resistance against plant pathogens. The underlying mechanisms for the activation of FLS2 in the cell membrane, however, are not fully understood. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that approximately 75% of the FLS2 in the plasma membrane diffuses laterally with a diffusion coefficient of 0.34 microm(2) s(-1), indicating that it moves rapidly. Further, we show that FLS2 is less mobile in the presence of flg22, suggesting its ligand-dependent confinement to microdomains or transient interaction with other less mobile membrane proteins. Using an in vivo bimolecular fluorescence complementation (BiFC) system and fluorescence resonance energy transfer (FRET), which reveals in vivo protein-protein interactions, we show that FLS2 does not homodimerize either constitutively or in the presence of flg22. Our data suggest that the reduced mobility of FLS2 after binding flg22 and its existence in monomeric form are important mechanistic features of FLS2 early signaling.  相似文献   

16.
Bacterial flagellins have been portrayed as a relatively invariant pathogen-associated molecular pattern. We have found within-species, within-pathovar variation for defense-eliciting activity of flagellins among Xanthomonas campestris pv campestris (Xcc) strains. Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a transmembrane leucine-rich repeat kinase, confers flagellin responsiveness. The flg22 region was the only Xcc flagellin region responsible for detectable elicitation of Arabidopsis defense responses. A Val-43/Asp polymorphism determined the eliciting/noneliciting nature of Xcc flagellins (structural gene fliC). Arabidopsis detected flagellins carrying Asp-43 or Asn-43 but not Val-43 or Ala-43, and it responded minimally for Glu-43. Wild-type Xcc strains carrying nonrecognized flagellin were more virulent than those carrying a recognized flagellin when infiltrated into Arabidopsis leaf mesophyll, but this correlation was misleading. Isogenic Xcc fliC gene replacement strains expressing eliciting or noneliciting flagellins grew similarly, both in leaf mesophyll and in hydathode/vascular colonization assays. The plant FLS2 genotype also had no detectable effect on disease outcome when previously untreated plants were infected by Xcc. However, resistance against Xcc was enhanced if FLS2-dependent responses were elicited 1 d before Xcc infection. Prior immunization was not required for FLS2-dependent restriction of Pseudomonas syringae pv tomato. We conclude that plant immune systems do not uniformly detect all flagellins of a particular pathogen species and that Xcc can evade Arabidopsis FLS2-mediated defenses unless the FLS2 system has been activated by previous infections.  相似文献   

17.
In this review we focus on pattern recognition receptors in plants that detect extracellular signals indicative for pathogen attack and injury. We start out with a discussion on FLS2, which binds and responds to bacterial flagellin, and then concentrate on ligand–receptor interactions as initial steps in the molecular receptor activation process. Comparison with other receptor kinases, whether involved in plant immunity or regulation of other cellular programs, might indicate common principles of receptor activation.  相似文献   

18.
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.  相似文献   

19.
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.  相似文献   

20.
Plants are constantly being challenged by aspiring pathogens. In order to protect themselves, plants have developed numerous defense mechanisms that are either specific or non-specific to the pathogen. Pattern recognition receptors can trigger plant defense responses in response to specific ligands or patterns. EIX (ethylene-inducing xylanase) triggers a defense response via the LeEix2 receptor, while bacterial flagellin triggers plant innate immunity via the FLS2 receptor. Endocytosis has been suggested to be crucial for the process in both cases. Here we show that the EIX elicitor triggers internalization of the LeEix2 receptor. Treatment with endocytosis, actin or microtubule inhibitors greatly reduced the internalization of LeEix2. Additionally, we demonstrate that plant EHD2 binds to LeEix2 and is an important factor in its internalization and in regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis and induction of pathogenesis-related protein expression in the case of EIX/LeEix2 (an LRR receptor lacking a kinase domain), but does not appear to be involved in the FLS2 system (an LRR receptor possessing a kinase domain). Our results suggest that various endocytosis pathways are involved in the induction of plant defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号