首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidation and adipose tissue uptake of dietary fat can be measured by adding fatty acid tracers to meals. These studies were conducted to measure between-study variability of these types of experiments and assess whether dietary fatty acids are handled differently in the follicular vs. luteal phase of the menstrual cycle. Healthy normal-weight men (n = 12) and women (n = 12) participated in these studies, which were block randomized to control for study order, isotope ([3H]triolein vs. [14C]triolein), and menstrual cycle. Energy expenditure (indirect calorimetry), meal fatty acid oxidation, and meal fatty acid uptake into upper body and lower body subcutaneous fat (biopsies) 24 h after the experimental meal were measured. A greater portion of meal fatty acids was stored in upper body subcutaneous adipose tissue (24 +/- 2 vs. 16 +/- 2%, P < 0.005) and lower body fat (12 +/- 1 vs. 7 +/- 1%, P < 0.005) in women than in men. Meal fatty acid oxidation (3H2O generation) was greater in men than in women (52 +/- 3 vs. 45 +/- 2%, P = 0.04). Leg adipose tissue uptake of meal fatty acids was 15 +/- 2% in the follicular phase of the menstrual cycle and 10 +/- 1% in the luteal phase (P = NS). Variance in meal fatty acid uptake was somewhat (P = NS) greater in women than in men, although menstrual cycle factors did not contribute significantly. We conclude that leg uptake of dietary fat is slightly more variable in women than in men, but that there are no major effects of menstrual cycle on meal fatty acid disposal.  相似文献   

2.
The mechanism(s) by which sex specific differences in regional body fat distribution develop are not known. We assessed the effects of a high-fat (HF) meal on fatty acid oxidation and uptake into regional fat depots using isotopic tracers and adipose biopsies. Thirty men (BMI 23.6 +/- 0.3 kg/m(2)) and 29 women (BMI 22.4 +/- 0.3 kg/m(2)) received a meal containing [(3)H]triolein. Twelve of the men and 13 of the women received an additional 80 g of triolein in the meal (HF) and the remainder received a normal-fat (NF) meal. Adipose tissue lipoprotein lipase (LPL) activity was measured in the fed and fasted state. After 24 h, meal fatty acid uptake into subcutaneous adipose tissue was assessed. The efficiency of meal fat uptake into upper body subcutaneous fat was similar in both sexes, but women had a greater leg fat uptake, especially in response to a HF meal (P < 0.0001). A correlation between fed-state LPL activity and meal fat uptake was found in both upper and lower body fat (P < 0.0001, r = 0.69). These studies show that, in times of net fat storage, women preferentially increase uptake in leg adipose tissue, and this is likely mediated by fed-state LPL activity.  相似文献   

3.
Two protocols were performed to study meal fatty acid metabolism. In protocol 1, 14 patients scheduled for elective intra-abdominal surgery (11 undergoing bariatric surgery for severe obesity) consumed a meal containing [3H]triolein in the evening before surgery. This allowed us to measure adipose tissue lipid specific activity (SA) in mesenteric and omental, deep and superficial abdominal subcutaneous adipose tissue. Intra-abdominal adipose tissue lipid SA was greater than subcutaneous lipid SA. There were no significant differences between mesenteric and omental or between deep and superficial abdominal subcutaneous adipose tissue. In protocol 2, meal fatty acid oxidation and uptake into subcutaneous and omental adipose tissue ([3H]triolein) were measured in six normal, healthy volunteers. Meal fatty acid oxidation (3H2O generation) plus that remaining in plasma ( approximately 1%) plus uptake into upper body subcutaneous, lower body subcutaneous, and visceral fat allowed us to account for 98 +/- 6% of meal fatty acids 24 h after meal ingestion. We conclude that omental fat is a good surrogate for visceral fat and that abdominal subcutaneous fat depots are comparable with regard to meal fatty acid metabolic studies. Using [3H]triolein, we were able to account for virtually 100% of meal fatty acids 24 h after meal ingestion. These results support the meal fatty acid tracer model as a way to study the metabolic fate of dietary fat.  相似文献   

4.
Although body fat distribution strongly predicts metabolic health outcomes related to excess weight, little is known about the factors an individual might exhibit that predict a particular fat distribution pattern. We utilized the meal fatty acid tracer-adipose biopsy technique to assess upper and lower body subcutaneous (UBSQ and LBSQ, respectively) meal fat storage in lean volunteers who then were overfed to gain weight. Meal fatty acid storage in UBSQ and LBSQ adipose tissue, as well as daytime substrate oxidation (indirect calorimetry), was measured in 28 nonobese volunteers [n = 15 men, body mass index = 22.1 ± 2.5 (SD)] before and after an ~8-wk period of supervised overfeeding (weight gain = 4.6 ± 2.2 kg, fat gain = 3.8 ± 1.7 kg). Meal fat storage (mg/g adipose tissue lipid) in UBSQ (visit 1: 0.78 ± 0.34 and 1.04 ± 0.71 for women and men, respectively, P = 0.22; visit 2: 0.71 ± 0.24 and 0.90 ± 0.37 for women and men, respectively, P = 0.08) and LBSQ (visit 1: 0.60 ± 0.23 and 0.48 ± 0.29 for women and men, respectively, P = 0.25; visit 2: 0.62 ± 0.24 and 0.65 ± 0.23 for women and men, respectively, P = 0.67) adipose tissue did not differ between men and women at either visit. Fractional meal fatty acid storage in UBSQ (0.31 ± 0.15) or LBSQ (0.19 ± 0.13) adipose tissue at visit 1 did not predict the percent change in regional body fat in response to overfeeding. These data indicate that meal fat uptake trafficking in the short term (24 h) is not predictive of body fat distribution patterns. In general, UBSQ adipose tissue appears to be a favored depot for meal fat deposition in both sexes, and redistribution of meal fatty acids likely takes place at later time periods.  相似文献   

5.
Santosa S  Jensen MD 《PloS one》2012,7(2):e31473
Testosterone has long been known to affect body fat distribution, although the underlying mechanisms remain elusive. We investigated the effects of chronic hypogonadism in men on adipose tissue fatty acid (FA) storage and FA storage factors. Twelve men with chronic hypogonadism and 13 control men matched for age and body composition: 1) underwent measures of body composition with dual energy x-ray absorptiometry and an abdominal CT scan; 2) consumed an experimental meal containing [(3)H]triolein to determine the fate of meal FA (biopsy-measured adipose storage vs. oxidation); 3) received infusions of [U-(13)C]palmitate and [1-(14)C]palmitate to measure rates of direct free (F)FA storage (adipose biopsies). Adipose tissue lipoprotein lipase, acyl-CoA synthetase (ACS), and diacylglycerol acetyl-transferase (DGAT) activities, as well as, CD36 content were measured to understand the mechanism by which alterations in fat storage occur in response to testosterone deficiency. Results of the study showed that hypogonadal men stored a greater proportion of both dietary FA and FFA in lower body subcutaneous fat than did eugonadal men (both p<0.05). Femoral adipose tissue ACS activity was significantly greater in hypogonadal than eugonadal men, whereas CD36 and DGAT were not different between the two groups. The relationships between these proteins and FA storage varied somewhat between the two groups. We conclude that chronic effects of testosterone deficiency has effects on leg adipose tissue ACS activity which may relate to greater lower body FA storage. These results provide further insight into the role of androgens in body fat distribution and adipose tissue metabolism in humans.  相似文献   

6.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

7.
Diacylglycerol acyltransferase (DGAT) could be a rate limiting step in triglyceride (TG) synthesis as it is the final step in this pathway. As such, between depot differences in DGAT activity could influence regional fat storage. DGAT activity and in vitro rates of direct free fatty acid (FFA) storage were measured in abdominal subcutaneous and omental adipose tissue samples from 12 nonobese (BMI <30 kg/m2) and 23 obese men and women (BMI >30 kg/m2) undergoing elective surgery. DGAT activity was greater in omental than in abdominal subcutaneous adipose tissue from nonobese patients (2.0 ± 0.9 vs. 0.9 ± 0.3 pmol/min/mg lipid, respectively, P = 0.003), but not from obese patients (1.4 ± 0.6 vs. 1.7 ± 0.7 pmol/min/mg lipid, respectively, P = 0.10). DGAT activity per unit adipose weight was negatively correlated with adipocyte size (P < 0.01) and positively correlated with direct FFA storage in omental (P < 0.001) but not in abdominal subcutaneous fat. Tissue DGAT activity varies as a function of adipocyte size, but this relationship differs between visceral and abdominal subcutaneous fat in obese and nonobese humans. Our results are consistent with the hypothesis that interindividual variations in DGAT activity may be an important regulatory step in visceral adipose tissue FFA uptake/storage.  相似文献   

8.
Body fat distribution is an important predictor of metabolic abnormalities in obese humans. Dysregulation of free fatty acid (FFA) release, especially from upper body subcutaneous adipose tissue, appears to contribute substantially to these metabolic disturbances. Why different individuals preferentially store fat in upper vs. lower body subcutaneous fat or subcutaneous vs. visceral fat is not completely understood. Current evidence suggests that defects in regional lipolysis are not the cause of net fat retention in larger fat depots. Regional variations in the storage of fatty acids, both meal derived and direct reuptake, and storage of circulating FFAs that may help to explain why some depots expand at the expense of others have been reported. We review the quantitative data on regional lipolysis, meal, and FFA storage in adults to provide an overview of fat balance differences in adults with different fat distribution patterns.  相似文献   

9.
The adipose tissue uptake of dietary fat has been studied using fatty acid radiotracers incorporated into a meal, followed by adipose tissue biopsies. A number of experimental design issues, including the use of isotopic tracers to measure meal fatty acid oxidation and plasma appearance of tracer, as well as the heterogeneity of adipose tissue fatty acid uptake, have been addressed. We examined these questions in a study of 24 volunteers (12 men and 12 women) who consumed a meal containing [(3)H]triolein and [(14)C]triolein. Slight differences in the purity of [(3)H]triolein vs. [(14)C]triolein were found, which could affect the apparent adipose tissue uptake of meal fatty acids. The adipose tissue triglyceride specific activity from bilateral biopsy sites agreed well, implying that a unilateral biopsy is satisfactory for measuring tracer uptake. Meal fatty acid oxidation measured using [(3)H]triolein and [(14)C]triolein was well correlated (r = 0.79, P < 0.0001). The peak tracer appearance in plasma chylomicrons occurred 1 h after the ingestion of a second, unlabeled meal. Our findings have implications for the experimental design of future meal fatty acid tracer/adipose tissue biopsy studies.  相似文献   

10.
The development of metabolic complications of obesity has been associated with the existence of depot-specific differences in the biochemical properties of adipocytes. The aim of this study was to investigate, in severely obese men and women, both gender- and depot-related differences in lipoprotein lipase (LPL) expression and activity, as well as the involvement of endocrine and biometric factors and their dependence on gender and/or fat depot. Morbidly obese, nondiabetic, subjects (9 men and 22 women) aged 41.1+/-1.9 years, with a body mass index (BMI) of 54.7+/-1.7 kg/m(2) who had undergone abdominal surgery were studied. Both expression and activity of LPL and leptin expression were determined in adipose samples from subcutaneous and visceral fat depots. In both men and women, visceral fat showed higher LPL mRNA levels as well as lower ob mRNA levels and tissue leptin content than the subcutaneous one. In both subcutaneous and visceral adipose depots, women exhibited higher protein content, decreased fat cell size and lower LPL activity than men. The gender-related differences found in abdominal fat LPL activity could contribute to the increased risk for developing obesity-associated diseases shown by men, even in morbid obesity, in which the massive fat accumulation could mask these differences. Furthermore, the leptin content of fat depots as well as plasma insulin concentrations appear in our population as the main determinants of adipose tissue LPL activity, adjusted by gender, depot and BMI.  相似文献   

11.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

12.
Insulin resistance (IR) is typically more severe in obese individuals with type 2 diabetes (T2DM) than in similarly obese non-diabetics but whether there are group differences in body composition and whether such differences contribute to the more severe IR of T2DM is uncertain. DEXA and regional CT imaging were conducted to assess adipose tissue (AT) distribution and fat content in liver and muscle in 67 participants with T2DM (F39/M28, age 60 +/- 7 yr, BMI 34 +/- 3 kg/m(2)) and in 35 similarly obese, non-DM volunteers (F20/M15, age 55 +/- 8 yr, BMI 33 +/- 2 kg/m(2)). A biopsy of subcutaneous abdominal AT was done to measure adipocyte size. A glucose clamp was performed at an insulin infusion of 80 mU x min(-1) x m(-2). There was more severe IR in T2DM (6.1 +/- 2.3 vs. 9.9 +/- 3.3 mg x min(-1) x kg FFM(-1); P < 0.01). Group comparisons of body composition parameters was performed after adjusting for the effect of age, gender, race, height and total fat mass (FM). T2DM was associated with less leg FM (-1.2 +/- 0.4 kg, P < 0.01), more trunk FM (+1.1 +/- 0.4 kg, P < 0.05), greater hepatic fat (P < 0.05), and more subfascial adipose tissue around skeletal muscle (P < 0.05). There was a significant group x sex interaction for VAT (P < 0.01), with greater VAT in women with T2DM (P < 0.01). Mean adipocyte size (AS) did not significantly differ across groups, and smaller AS was associated with increased leg FM, whereas larger AS was related to more trunk FM (both P < 0.05). Group differences in IR were less after adjusting for group differences in leg FM, trunk FM, and hepatic fat, but these adjustments only partially accounted for the greater severity of IR in T2DM. In summary, T2DM, compared with similarly obese nondiabetic men and women, is associated with less leg FM and greater trunk FM and hepatic fat.  相似文献   

13.
The objective of this study was to test the hypothesis that increased fatty acid trapping by subcutaneous adipose tissue might contribute to the development and/or maintenance of obesity. To do so, venoarterial (V-A) gradients across subcutaneous adipose tissue for triglycerides, glycerol, nonesterified fatty acid (NEFA), and acylation-stimulating protein (ASP) were determined in eight lean females [body mass index (BMI), 22.2 +/- 0.6] and eight obese females (BMI, 34.4 +/- 3.4). Plasma insulin was also measured at intervals throughout this period. Fasting plasma triglyceride was significantly higher in the obese group and postprandial triglyceride was also significantly delayed. In contrast, both triglyceride clearance and fatty acid uptake by subcutaneous adipose tissue were significantly greater in the obese group compared with the lean group. Fasting insulin did not differ between the groups, but postprandial insulin values were significantly higher in the obese group. The pattern of ASP release from subcutaneous adipose tissue also appeared to differ in that it was significantly greater in the early postprandial period (0;-90 min) in the obese group versus the lean group and this correlated with greater triglyceride clearance during this period. Moreover, there were strong, positive correlations between BMI and the V-A gradient for fasting ASP, the 0- to 90-min area under the curve (AUC) for ASP V-A gradient fasting insulin, and the 0- to 90-min AUC for fatty acid incorporation into adipose tissue. Taken together, these data demonstrate that fatty acid trapping by adipose tissue can be increased even when overall plasma triglyceride clearance is delayed. The postprandial pattern of insulin, in particular, was altered in the obese, although it is certainly possible that differences in ASP release or response could also contribute to increased fatty acid trapping in the obese.The data, therefore, suggest that increased fatty acid trapping by adipose tissue may be a feature of some forms of obesity.  相似文献   

14.
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.  相似文献   

15.
We evaluated lipid metabolism during 90 min of moderate-intensity (50% VO(2) peak) cycle ergometer exercise in five men and five women who were matched on adiposity (24 +/- 2 and 25 +/- 1% body fat, respectively) and aerobic fitness (VO(2) peak: 49 +/- 2 and 47 +/- 1 ml x kg fat-free mass(-1) x min(-1), respectively). Substrate oxidation and lipid kinetics were measured by using indirect calorimetry and [(13)C]palmitate and [(2)H(5)]glycerol tracer infusion. The total increase in glycerol and free fatty acid (FFA) rate of appearance (R(a)) in plasma during exercise (area under the curve above baseline) was approximately 65% greater in women than in men (glycerol R(a): 317 +/- 40 and 195 +/- 33 micromol/kg, respectively; FFA R(a): 652 +/- 46 and 453 +/- 70 micromol/kg, respectively; both P < 0.05). Total fatty acid oxidation was similar in men and women, but the relative contribution of plasma FFA to total fatty acid oxidation was higher in women (76 +/- 5%) than in men (46 +/- 5%; P < 0.05). We conclude that lipolysis of adipose tissue triglycerides during moderate-intensity exercise is greater in women than in men, who are matched on adiposity and fitness. The increase in plasma fatty acid availability leads to a greater rate of plasma FFA tissue uptake and oxidation in women than in men. However, total fat oxidation is the same in both groups because of a reciprocal decrease in the oxidation rate of fatty acids derived from nonplasma sources, presumably intramuscular and possibly plasma triglycerides, in women.  相似文献   

16.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

17.
Steady state expression of lipoprotein lipase was compared in abdominal and gluteal subcutaneous adipose tissue of nonobese men and women. In both regions enzyme activity and lipoprotein lipase mRNA levels were significantly higher in women than in men. In men the enzyme activity was higher in abdominal than in gluteal adipose tissue (P less than 0.01) whereas the opposite was observed in women (P less than 0.05). In both sexes, however, lipoprotein lipase mRNA levels were threefold higher in the abdominal as compared to the gluteal site, whether they were determined in isolated fat cells or in fat segments (P less than 0.01). This regional difference persisted when the mRNA values were expressed as a function of the mRNA concentration for beta-actin. There was a correlation between the two adipose tissue regions as regards the values for enzyme activity and mRNA level (r = 0.6-0.8). Northern blot analysis revealed two mRNA species of 3.5 and 3.7 kilobases, respectively. It is concluded that there are regional variations in the steady state expression of lipoprotein lipase in human subcutaneous adipose tissue. This involves site variations in gene expression as well as posttranslational modification of lipoprotein lipase enzyme activity and may contribute to the characteristic variations in adipose tissue mass and distribution between men and women.  相似文献   

18.
We previously reported that a eucaloric, low fat, liquid formula diet enriched in simple carbohydrate markedly increased the synthesis of fatty acids in lean volunteers. To examine the diet sensitivity of obese subjects, 7 obese and 12 lean volunteers were given two eucaloric low fat solid food diets enriched in simple sugars for 2 weeks each in a random-order, cross-over design (10% fat, 75% carbohydrate vs. 30% fat, 55% carbohydrate, ratio of sugar to starch 60:40). The fatty acid compositions of both diets were matched to the composition of each subject's adipose tissue and fatty acid synthesis measured by the method of linoleate dilution in plasma VLDL triglyceride. In all subjects, the maximum % de novo synthesized fatty acids in VLDL triglyceride 3;-9 h after the last meal was higher on the 10% versus the 30% fat diet. There was no significant difference between the dietary effects on lean (43+/-13 vs. 12+/-13%) and obese (37+/-15 vs. 6+/-6%) subjects, despite 2-fold elevated levels of insulin and reduced glucagon levels in the obese. Similar results were obtained for de novo palmitate synthesis in VLDL triglyceride measured by mass isotopomer distribution analysis after infusion of [(13)C]acetate. On the 10% fat diet, plasma triglycerides (fasting and 24 h) were increased and correlated with fatty acid synthesis. Triglycerides were higher when fatty acid synthesis was constantly elevated rather than having diurnal variation.Thus, eucaloric, solid food diets which are very low in fat and high in simple sugars markedly stimulate fatty acid synthesis from carbohydrate, and plasma triglycerides increase in proportion to the amount of fatty acid synthesis. However, this dietary effect is not related to body mass index, insulin, or glucagon levels.  相似文献   

19.
Direct FFA storage in adipose tissue is a recently appreciated pathway for postabsorptive lipid storage. We evaluated the effect of body fat distribution on direct FFA storage in women with different obesity phenotypes. Twenty-eight women [10 upper body overweight/obese (UBO; WHR >0.85, BMI >28 kg/m(2)), 11 lower body overweight/obese (LBO; WHR <0.80, BMI >28 kg/m(2)), and 7 lean (BMI <25 kg/m(2))] received an intravenous bolus dose of [9,10-(3)H]palmitate- and [1-(14)C]triolein-labeled VLDL tracer followed by upper body subcutaneous (UBSQ) and lower body subcutaneous (LBSQ) fat biopsies. Regional fat mass was assessed by combining DEXA and CT scanning. We report greater fractional storage of FFA in UBSQ fat in UBO women compared with lean women (P < 0.01). The LBO women had greater storage per 10(6) fat cells in LBSQ adipocytes compared with UBSQ adipocytes (P = 0.04), whereas the other groups had comparable storage in UBSQ and LBSQ adipocytes. Fractional FFA storage was significantly associated with fractional VLDL-TG storage in both UBSQ (P < 0.01) and LBSQ (P = 0.03) adipose tissue. In conclusion, UBO women store a greater proportion of FFA in the UBSQ depot compared with lean women. In addition, LBO women store FFA more efficiently in LBSQ fat cells compared with UBSQ fat cells, which may play a role in development of their LBO phenotype. Finally, direct FFA storage and VLDL-TG fatty acid storage are correlated, indicating they may share a common rate-limiting pathway for fatty acid storage in adipose tissue.  相似文献   

20.
Treatment of type 2 diabetes (T2DM) with pioglitazone changes abdominal fat in the opposite direction as treatment with glipizide. To determine whether these two medications affect adipose tissue meal fatty acid storage differently we studied 19 T2DM treated with either pioglitazone (n = 8) or glipizide (n = 11) and 11 non‐DM control subjects matched for age, BMI, abdominal and leg fat. A breakfast mixed meal containing [1‐14C]triolein was given and abdominal and femoral subcutaneous (sc) adipose tissue biopsies were collected 6 and 24 h later to measure meal fatty acid storage. The portion of meal fatty acids stored in upper body sc and lower body sc adipose tissue did not differ between non‐DM and T2DM subjects either at 6 or 24 h. Likewise, meal fatty acid storage did not differ between the T2DM participants treated with pioglitazone or glipizide. We conclude that meal fatty acid storage in upper body and lower body sc adipose tissue is not abnormal in T2DM patients treated with pioglitazone or glipizide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号