首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
IKK alpha is a component of the I kappa B kinase (IKK) complex that plays a key role in the activation of NF-kappa B. In Ikk alpha mutant mice and mice expressing a transdominant negative mutant of I kappa B alpha (cI kappa B alpha Delta N), molars have abnormal cusps, indicating that Ikk alpha is involved in cusp formation through the NF-kappa B pathway. However, Ikk alpha mutant incisors also have an earlier phenotype where epithelium evaginates outward into the developing oral cavity rather than invaginating into the underlying mesenchyme. A similar evagination of epithelium was also observed in whisker development, suggesting that Ikk alpha contributes to the direction of epithelial growth during the early stages of development in many ectodermal appendages. Since cI kappa B alpha Delta N mice have normal incisor epithelial invagination, Ikk alpha's role appears to be NF-kappa B independent. Changes in Notch1, Notch2, Wnt7b, and Shh expression found in incisor epithelium of Ikk alpha mutants suggest that this NF-kappa B-independent function is mediated by Notch/Wnt/Shh signaling pathways.  相似文献   

5.
The NFκB family is composed by five subunits (p65/RelA, c-Rel, RelB, p105-p50/NFκB1, p100-p52/NF-κB2) and controls the expression of many genes that participate in cell cycle, apoptosis, and other key cellular processes. In a canonical pathway, NF-κB activation depends on the IKK complex activity, which is formed by three subunits (IKKα and IKKβ and IKKγ/NEMO). There is an alternative NFκB activation pathway that does not require IKKβ or IKKγ/NEMO, in which RelB is a major player. We report in a panel of human breast cancer cells that the IKK/NFκB system is generally overexpressed in breast cancer cells and there is heterogeneity in expression levels of individual members between different cell lines. Doxorubicin, an anticancer agent used in patients with breast cancer, activated NFκB and appeared to be less effective in cells expressing predominantly members of the canonical IKK/NFκB. Two NFκB inhibitors, bortezomib and NEMO-Binding Domain Inhibitory Peptide, prevented doxorubicin-induced NFκB activation and increased doxorubicin antitumor effects in BT-474 cells. Transient downregulation of members of the canonical pathway (p65, p52, c-Rel and IKKγ/NEMO) by siRNA in HeLa cells increased doxorubicin cytotoxicity. In contrast, silencing of RelB, a key subunit of the alternative pathway, had no evident effects on doxorubicin cytotoxicity. To conclude, NFκB inhibition sensitized cells to doxorubicin, implying directly p65, p52, c-Rel and IKKγ/NEMO subunits in chemoresistance, but not RelB. These findings suggest that selective inhibition of the canonical NFκB pathway is sufficient to improve doxorubicin antitumor effects.  相似文献   

6.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

7.
8.
9.
10.
The IκB kinase (IKK) complex acts as a gatekeeper of canonical NF-κB signaling in response to upstream stimulation. IKK activation requires sensing of ubiquitin chains by the essential IKK regulatory subunit IKKγ/NEMO. However, it has remained enigmatic whether NEMO binding to Lys-63-linked or linear ubiquitin chains is critical for triggering IKK activation. We show here that the NEMO C terminus, comprising the ubiquitin binding region and a zinc finger, has a high preference for binding to linear ubiquitin chains. However, immobilization of NEMO, which may be reminiscent of cellular oligomerization, facilitates the interaction with Lys-63 ubiquitin chains. Moreover, selective mutations in NEMO that abolish association with linear ubiquitin but do not affect binding to Lys-63 ubiquitin are only partially compromising NF-κB signaling in response to TNFα stimulation in fibroblasts and T cells. In line with this, TNFα-triggered expression of NF-κB target genes and induction of apoptosis was partially compromised by NEMO mutations that selectively impair the binding to linear ubiquitin chains. Thus, in vivo NEMO interaction with linear and Lys-63 ubiquitin chains is required for optimal IKK activation, suggesting that both type of chains are cooperating in triggering canonical NF-κB signaling.  相似文献   

11.
12.
Apoptosis is mediated by cysteine-dependent, aspartate-directed proteases of the caspase family that proteolyse strategic intracellular substrates to induce cell suicide. We describe here that engagement of apoptotic processes by Fas triggering or by staurosporine stimulation leads to the caspase-dependent inactivation of the nuclear factor kappa B (NF-kappaB) pathway after cleavage of IKK1 (IkappaB kinase 1) and NEMO (NF-kappaB essential modulator), which are needed to transduce NF-kappaB activation signals. In this study, we have analyzed in more detail, the role of NEMO cleavage, as NEMO, but not IKK1, is important for the pro-survival actions of NF-kappaB. We demonstrate that NEMO is cleaved after Asp355 to remove the last 64 C-terminal amino acids. This short form was unable to rescue NF-kappaB activation by tumor necrosis factor-alpha (TNF-alpha) when transfected in NEMO-deficient cells. Consequently, inactivation of NEMO resulted in an inhibition of the expression of antiapoptotic NF-kappaB-target genes coding for caspase inhibitors (cIAP-1, cIAP-2) or adaptors of the TNF receptor family. NEMO-deficient Jurkat cells transiently expressing a non-cleavable mutant of NEMO were less sensitive to TNF-alpha-induced apoptosis. Therefore, downmodulation of NF-kappaB activation via the proteolytic cleavage of NEMO could represent an amplification loop for apoptosis.  相似文献   

13.
14.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

15.
16.
Wang K  Diao LH  Gong Y  Liu X  Li Y 《Cellular signalling》2012,24(8):1556-1564
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.  相似文献   

17.
Inhibitor of κB kinase (IKK) gamma (IKKγ), also referred to as nuclear factor κB (NF‐κB) essential modulator (NEMO), is an important regulatory component of the IKK complex. The IKK complex is a signalosome that catalyzes the inducible phosphorylation of IκB proteins, which is a key step that leads to the activation of NF‐κB. The exact functions of IKKγ (NEMO) as part of the IKK complex have not yet been fully elucidated. This mini‐review covers 16 proteins that have been reported to bind to IKKγ and lead to the enhancement of the activities of the IKK complex, thus resulting in NF‐κB activation. The major mechanisms by which these interactions are mediated involve the recognition of ubiquitinated upstream signaling components by IKKγ or the modification of IKKγ itself by ubiquitination. Additional mechanisms include the sumoylation or phosphorylation of IKKγ and the modification of the tertiary or quaternary structure of IKKγ. J. Cell. Physiol. 223:558–561, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Besides activating NFκB by phosphorylating IκBs, IKKα/IKKβ kinases are also involved in regulating metabolic insulin signaling, the mTOR pathway, Wnt signaling, and autophagy. How IKKβ enzymatic activity is targeted to stimulus-specific substrates has remained unclear. We show here that NEMO, known to be essential for IKKβ activation by inflammatory stimuli, is also a specificity factor that directs IKKβ activity toward IκBα. Physical interaction and functional competition studies with mutant NEMO and IκB proteins indicate that NEMO functions as a scaffold to recruit IκBα to IKKβ. Interestingly, expression of NEMO mutants that allow for IKKβ activation by the cytokine IL-1, but fail to recruit IκBs, results in hyperphosphorylation of alternative IKKβ substrates. Furthermore IKK's function in autophagy, which is independent of NFκB, is significantly enhanced without NEMO as IκB scaffold. Our work establishes a role for scaffolds such as NEMO in determining stimulus-specific signal transduction via the pleiotropic signaling hub IKK.  相似文献   

19.
20.
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy‐candidiasis‐ectodermal dystrophy (APECED) as well as in a mouse model in which kinase‐dead Ikkα knock‐in mice develop impaired central tolerance, autoreactive T cell–mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF‐κB activation. IKK/NF‐κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF‐κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF‐κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF‐κB in these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号