首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3' DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3'-5' exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3' recessed ends were preferred substrates for the 3'-5' exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.  相似文献   

2.
The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity   总被引:11,自引:0,他引:11  
NM23-H1 belongs to a family of eight gene products in humans that have been implicated in cellular differentiation and development, as well as oncogenesis and tumor metastasis. We have defined NM23-H1 biochemically as a 3'-5' exonuclease by virtue of its ability in stoichiometric amounts to excise single nucleotides in a stepwise manner from the 3' terminus of DNA. The activity is dependent upon the presence of Mg(2+), is most pronounced with single-stranded substrates or mismatched bases at the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal position. The 3'-5' exonuclease activity was assigned to NM23-H1 by virtue of: 1) precise coelution of enzymatic activity with wild-type and mutant forms of NM23-H1 protein during purification by hydroxylapatite and gel filtration column high performance liquid chromatography and 2) significantly diminished activity exhibited by purified recombinant mutant forms of the proteins. Lysine 12 appears to play an important role in the catalytic mechanism, as evidenced by the significant reduction in 3'-5' exonuclease activity resulting from a Lys(12) to glutamine substitution within the protein. 3'-5' Exonucleases are believed to play an important role in DNA repair, a logical candidate function underlying the putative antimetastatic and oncogenic activities of NM23-H1.  相似文献   

3.
Endonuclease IV has AP endonuclease and 3'-repair diesterase activities. Here, we report Chlamydophila pneumoniae endonuclease IV (CpEndoIV) could hydrolyze the ds DNA and the RNA strand of RNA/DNA hybrid from the 3' end, yet the DNA strand of RNA/DNA hybrid was not the effective substrate of CpEndoIV. The optimal pH for 3' exonuclease on double-stranded (ds) DNA and RNA/DNA hybrids were both basic, but with some difference. The effect of divalent ions (Mg(2+), Ca(2+), Zn(2+), Cu(2+), Ni(2+), and Mn(2+)) on 3' exonuclease was different for both substrates. High concentration of NaCl inhibited 3' exonuclease on both substrates. For both substrates, the 3' exonuclease activity of CpEndoIV on matched and mismatched 3' end was comparable.  相似文献   

4.
VDJP (V(D)J RSS Dependent DNA Joining Protein) was cloned based on binding to the nonamer portion of the V(D)J recombinational signal sequence (RSS), and genetic analysis revealed that VDJP is encoded by the same gene as the large subunit of Replication Factor C (RF-C). Recombinant VDJP has a site directed DNA joining activity and is capable of forming a covalent bond between DNA fragments containing an RSS element near their ends and exhibits 3' to 5' exonuclease activity. In this report, we examine the biochemical properties of the VDJP exonuclease activity such as directionality of nuclease action (3' to 5' or 5' to 3'), single-strand substrate preference, cleavage products, dependence on cofactors and metal cations, and optimal reaction conditions. From this analysis, we conclude that VDJP has an intrinsic 3'-5' exonuclease activity that produces mononucleotide products.  相似文献   

5.
6.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

7.
Autonomous 3'-->5'exonucleases are not bound covalently to DNA polymerases but are often involved in replicative complexes. Such exonucleases from rat liver, calf thymus and Escherichia coli (molecular masses of 28+/-2 kDa) are shown to increase more than 10-fold the accuracy of DNA polymerase beta (the most inaccurate mammalian polymerase) from rat liver in the course of reduplication of the primed DNA of bacteriophage phiX174 amber 3 in vitro. The extent of correction increases together with the rise in 3'-->5' exonuclease concentration. Extrapolation of the in vitro DNA replication fidelity to the cellular levels of rat exonuclease and beta-polymerase suggests that exonucleolytic proofreading could augment the accuracy of DNA synthesis by two orders of magnitude. These results are not explained by exonucleolytic degradation of the primers ("no synthesis-no errors"), since similar data are obtained with the use of the primers 15 or 150 nucleotides long in the course of a fidelity assay of DNA polymerases, both alpha and beta, in the presence of various concentrations of 3'-->5' exonuclease.  相似文献   

8.
The mechanism of the 3'-5' exonuclease activity of the Klenow fragment of DNA polymerase I has been investigated with a combination of biochemical and spectroscopic techniques. Site-directed mutagenesis was used to make alanine substitutions of side chains that interact with the DNA substrate on the 5' side of the scissile phosphodiester bond. Kinetic parameters for 3'-5' exonuclease cleavage of single- and double-stranded DNA substrates were determined for each mutant protein in order to probe the role of the selected side chains in the exonuclease reaction. The results indicate that side chains that interact with the penultimate nucleotide (Q419, N420, and Y423) are important for anchoring the DNA substrate at the active site or ensuring proper geometry of the scissile phosphate. In contrast, side chains that interact with the third nucleotide from the DNA terminus (K422 and R455) do not participate directly in exonuclease cleavage of single-stranded DNA. Alanine substitutions of Q419, Y423, and R455 have markedly different effects on the cleavage of single- and double-stranded DNA, causing a much greater loss of activity in the case of a duplex substrate. Time-resolved fluorescence anisotropy decay measurements with a dansyl-labeled primer/template indicate that the Q419A, Y423A, and R455A mutations disrupted the ability of the Klenow fragment to melt duplex DNA and bind the frayed terminus at the exonuclease site. In contrast, the N420A mutation stabilized binding of a duplex terminus to the exonuclease site, suggesting that the N420 side chain facilitates the 3'-5' exonuclease reaction by introducing strain into the bound DNA substrate. Together, these results demonstrate that protein side chains that interact with the second or third nucleotides from the terminus can participate in both the chemical step of the exonuclease reaction, by anchoring the substrate in the active site or by ensuring proper geometry of the scissile phosphate, and in the prechemical steps of double-stranded DNA hydrolysis, by facilitating duplex melting.  相似文献   

9.
V Bailly  W G Verly 《FEBS letters》1984,178(2):223-227
The 3' AP endonucleases (class I) are said to hydrolyze the phosphodiester bond 3' to AP sites yielding 3'-OH and 5'-phosphate ends; on the other hand, the resulting 3' terminal AP site is not removed by the 3'-5' exonuclease activity of the Klenow fragment [1]. We show that AP sites in DNA are easily removed by the 3'-5' exonuclease activity of the Klenow fragment and that they are excised as deoxyribose-5-phosphate. It is suggested that the 3' AP endonucleases are perhaps not the hydrolases they are supposed to be.  相似文献   

10.
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function.  相似文献   

11.
Thermus aquaticus DNA polymerase was shown to contain an associated 5' to 3' exonuclease activity. Both polymerase and exonuclease activities cosedimented with a molecular weight of 72,000 during sucrose gradient centrifugation. Using a novel in situ activity gel procedure to simultaneously detect these two activities, we observed both DNA polymerase and exonuclease in a single band following either nondenaturing or denaturing polyacrylamide gel electrophoresis: therefore, DNA polymerase and exonuclease activities reside in the same polypeptide. As determined by SDS-polyacrylamide gel electrophoresis this enzyme has an apparent molecular weight of 92,000. The exonuclease requires a divalent cation (MgCl2 or MnCl2), has a pH optimum of 9.0 and excises primarily deoxyribonucleoside 5'-monophosphate from double-stranded DNA. Neither heat denatured DNA nor the free oligonucleotide (24-mer) were efficient substrates for exonuclease activity. The rate of hydrolysis of a 5'-phosphorylated oligonucleotide (24-mer) annealed to M13mp2 DNA was about twofold faster than the same substrate containing a 5'-hydroxylated residue. Hydrolysis of a 5'-terminal residue from a nick was preferred threefold over the same 5'-end of duplex DNA. The 5' to 3' exonuclease activity appeared to function coordinately with the DNA polymerase to facilitate a nick translational DNA synthesis reaction.  相似文献   

12.
Human DNA polymerase delta (pol delta) is required for the synthesis of leading strand of simian virus 40 (SV40) DNA replication in vitro. Pol delta requires the accessory factors, proliferating cell nuclear antigen (PCNA), activator 1 (A1; also known as replication factor C [RF-C]), human single-stranded DNA binding protein (HSSB; also known as replication protein A [RP-A]) for the elongation of primed template DNA. Since pol delta has an associated 3'-5' exonuclease activity, the effect of pol delta accessory factors on the exonuclease activity was examined. The 3'-5' exonuclease activity was stimulated 8-10 fold by the addition of HSSB, and this stimulatory effect was preferential to HSSB since other SSBs from E. coli, T4 or adenovirus, had a little or no effect. The stimulatory effect of HSSB was markedly inhibited by the combined action of A1 and PCNA. Furthermore, the addition of deoxyribonucleoside triphosphates (dNTPs) completely abolished the effect of HSSB on the 3'-5' exonuclease activity even in the absence of pol delta accessory factors. These results suggest that accessory factors and dNTPs regulate both the polymerase and the 3'-5' exonuclease activities.  相似文献   

13.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

14.
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.  相似文献   

15.
The DNase that is associated with a multiprotein form of HeLa cell DNA polymerase alpha (polymerase alpha 2) has two distinct exonuclease activities: the major activity initiates hydrolysis from the 3' terminus and the other from the 5' terminus of single-stranded DNA. The two exonuclease activities show identical rates of thermal inactivation and coincidental migration during chromatofocusing, glycerol gradient centrifugation, and nondenaturing polyacrylamide gel electrophoresis of the DNase. Moreover, the purified DNase shows a single protein band of Mr 69,000 following nondenaturing polyacrylamide and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 3'----5' exonuclease activity hydrolyzes only single-stranded DNA substrates and the products are 5' mononucleotides. This activity recognizes and excizes mismatched bases at the 3' terminus of double-stranded DNA substrates. The 3'----5' exonuclease does not hydrolyze 3' phosphoryl terminated single-stranded DNA substrates. The 5'----3' exonuclease activity also only hydrolyzes single-stranded DNA substrates. The rate of hydrolysis, however is only about 1/25th the rate of the 3'----5' exonuclease. This exonuclease activity requires a 5' single-stranded terminus in order to initiate hydrolysis and does not proceed into double-stranded regions. The products of hydrolysis by 5'----3' exonuclease are also 5' nucleoside monophosphates.  相似文献   

16.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

17.
The DnaQ-H family exonuclease Snipper (Snp) is a 33-kDa Drosophila melanogaster homolog of 3'hExo and ERI-1, exoribonucleases implicated in the degradation of histone mRNA in mammals and in the negative regulation of RNA interference (RNAi) in Caenorhabditis elegans, respectively. In metazoans, Snp, Exod1, 3'hExo, ERI-1, and the prpip nucleases define a new subclass of structure-specific 3'-5' exonucleases that bind and degrade double-stranded RNA and/or DNA substrates with 3' overhangs of 2-5 nucleotides (nt) in the presence of Mg2+ with no apparent sequence specificity. These nucleases are also capable of degrading linear substrates. Snp efficiently degrades structured RNA and DNA substrates as long as there exists a minimum 3' overhang of 2 nt to initiate degradation. We identified a Snp mutant and used it to test whether Snp plays a role in regulating histone mRNA degradation or RNAi in vivo. Snp mutant flies are viable, and display no obvious developmental abnormalities. The expression pattern and level of histone H3 mRNA in Snp mutant embryos and third instar imaginal eye discs was indistinguishable from wild type, suggesting that Snp does not play a significant role in the turnover of histone mRNA at the end of the S phase. The loss of Snp was also unable to enhance the silencing capability of two different RNAi transgenes targeting the white and yellow genes, suggesting that Snp does not negatively modulate RNAi. Therefore, Snp is a nonessential exonuclease that is not a functional ortholog of either 3'hExo or ERI-1.  相似文献   

18.
Vaccinia topoisomerase forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a pentapyrimidine target site 5'-CCCTTp downward arrow in duplex DNA. By introducing single 2'-5' phosphodiesters in lieu of a standard 3'-5' phosphodiester linkage, we illuminate the contributions of phosphodiester connectivity to DNA transesterification. We find that the DNA cleavage reaction was slowed by more than six orders of magnitude when a 2'-5' linkage was present at the scissile phosphodiester (CCCTT(2')p downward arrow(5')A). Thus, vaccinia topoisomerase is unable to form a DNA-(2'-phosphotyrosyl)-enzyme intermediate. We hypothesize that the altered geometry of the 2'-5' phosphodiester limits the ability of the tyrosine nucleophile to attain a requisite, presumably apical orientation with respect to the 5'-OH leaving group. A 2'-5' phosphodiester located to the 3' side of the cleavage site (CCCTTp downward arrowN(2')p(5')N) reduced the rate of transesterification by a factor of 500. In contrast, 2'-5' phosphodiesters at four other sites in the scissile strand (TpCGCCCTpT downward arrowATpTpC) and five positions in the nonscissile strand (3'-GGGpApApTpApA) had no effect on transesterification rate. The DNAs containing 2'-5' phosphodiesters were protected from digestion by exonuclease III. We found that exonuclease III was consistently arrested at positions 1 and 2 nucleotides prior to the encounter of its active site with the modified 2'-5' phosphodiester and that the 2'-5' linkage itself was poorly hydrolyzed by exonuclease III.  相似文献   

19.
As an important mode of suppressing gene expression, messenger RNAs containing an AU-rich element (ARE) in the 3' untranslated region are rapidly degraded in the cytoplasm. ARE-mediated mRNA decay (AMD) is initiated by deadenylation, and in vitro studies have indicated that subsequent degradation occurs in the 3'-5' direction through a complex of exonucleases termed the exosome. An alternative pathway of mRNA degradation occurs at processing bodies, cytoplasmic foci that contain decapping enzymes, the 5'-3' exonuclease Xrn1 and the Lsm1-7 heptamer. To determine which of the two pathways is important for AMD in live cells, we targeted components of both pathways using short interfering RNA in human HT1080 cells. We show that Xrn1 and Lsm1 are essential for AMD. On the other side, out of three exosome components tested, only knockdown of PmScl-75 caused a strong inhibition of AMD. Our results show that mammalian cells, similar to yeast, require the 5'-3' Xrn1 pathway to degrade ARE-mRNAs.  相似文献   

20.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号