首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drosophila neurotactin is a transmembrane glycoprotein with an apparent molecular mass of 135 x 10(3). Neurotactin is regionally expressed at the cellular blastoderm stage; later in embryogenesis the expression of the protein becomes restricted to cells of the peripheral and central nervous system. Immunocytochemical localization shows neurotactin protein at points of cell-cell contact. Using the anti-neurotactin monoclonal antibody BP-106, a neurotactin cDNA was isolated that encodes a 846 residue polypeptide. The chromosomal location of the neurotactin gene is 73C. The extracellular domain at the carboxyterminal end of the neurotactin protein shows a strong structural and sequence homology to serine esterases without retaining the amino acids forming the active center. Neurotactin therefore belongs to a growing group of proteins including Drosophila glutactin and thyroglobulins that are known to share this serine esterase protein domain motif without retaining the active center of the enzyme.  相似文献   

2.
Drosophila neurotactin mediates heterophilic cell adhesion.   总被引:3,自引:2,他引:1       下载免费PDF全文
Neurotactin is a 135 kd membrane glycoprotein which consists of a core protein, with an apparent molecular weight of 120 kd, and of N-linked oligosaccharides. In vivo, the protein can be phosphorylated in presence of radioactive orthophosphate. Neurotactin expression in the larval CNS and in primary embryonic cell cultures suggests that it behaves as a contact molecule between neurons or epithelial cells. Electron microscopy studies reveal that neurotactin is uniformly expressed along the areas of contacts between cells, without, however, being restricted to a particular type of junction. It putative adhesive properties have been tested by transfecting non adhesive Drosophila S2 cells with neurotactin cDNA. Heat shocked transfected cells do not aggregate, suggesting that neurotactin does not mediate homophilic cell adhesion. However, these transfected cells bind to a subpopulation of embryonic cells which probably possess a related ligand. The location at cellular junctions between specific neurons or epithelial cells, the heterophilic binding to a putative ligand and the ability to be phosphorylated are consistent with the suggestion that neurotactin functions as an adhesion molecule.  相似文献   

3.
Amalgam (Ama) is a secreted neuronal adhesion protein that contains three tandem immunoglobulin domains. It has both homophilic and heterophilic cell adhesion properties, and is required for axon guidance and fasciculation during early stages of Drosophila development. Here, we report its biophysical characterization and use small-angle x-ray scattering to determine its low-resolution structure in solution. The biophysical studies revealed that Ama forms dimers in solution, and that its secondary and tertiary structures are typical for the immunoglobulin superfamily. Ab initio and rigid-body modeling by small-angle x-ray scattering revealed a distinct V-shaped dimer in which the two monomer chains are aligned parallel to each other, with the dimerization interface being formed by domain 1. These data provide a structural basis for the dual adhesion characteristics of Ama. Thus, the dimeric structure explains its homophilic adhesion properties. Its V shape suggests a mechanism for its interaction with its receptor, the single-pass transmembrane adhesion protein neurotactin, in which each “arm” of Ama binds to the extracellular domain of neurotactin, thus promoting its clustering on the outer face of the plasma membrane.  相似文献   

4.
Neurotactin (NRT), a member of the cholinesterase-homologous protein family, is a heterophilic cell adhesion molecule that is required for proper axon guidance during Drosophila development. In this study, we identify amalgam (AMA), a member of the immunoglobulin superfamily, as a ligand for the NRT receptor. Using transfected Schneider 2 cells and embryonic primary cultures, we demonstrate that AMA is a secreted protein. Furthermore, AMA is necessary for NRT-expressing cells both to aggregate with themselves and to associate with embryonic primary culture cells. Aggregation assays performed with truncated NRT molecules reveal that the integrity of the cholinesterase-like extracellular domain was not required either for AMA binding or for adhesion, with only amino acids 347-482 of the extracellular domain being necessary for both activities. Moreover, the NRT cytoplasmic domain is required for NRT-mediated adhesion, although not for AMA binding. Using an ama-deficient stock, we find that ama function is not essential for viability. Pupae deficient for ama do exhibit defasciculation defects of the ocellar nerves similar to those found in nrt mutants.  相似文献   

5.
Amalgam, a multi-domain member of the immunoglobulin superfamily, possesses homophilic and heterophilic cell adhesion properties. It is required for axon guidance during Drosophila development in which it interacts with the extracellular domain of the transmembrane protein, neurotactin, to promote adhesion. Amalgam was heterologously expressed in Pichia pastoris, and the secreted protein product, bearing an NH2-terminal His6Tag, was purified from the growth medium by metal affinity chromatography. Size exclusion chromatography separated the purified protein into two fractions: a major, multimeric fraction and a minor, dimeric one. Two protocols to reduce the percentage of multimers were tested. In one, protein induction was performed in the presence of the zwitterionic detergent CHAPS, yielding primarily the dimeric form of amalgam. In a second protocol, agitation was gradually reduced during the course of the induction and antifoam was added daily to reduce the air/liquid interfacial foam area. This latter protocol lowered the percentage of multimer 2-fold, compared to constant agitation. Circular dichroism measurements showed that the dimeric fraction had a high β-sheet content, as expected for a protein with an immunoglobulin fold. Dynamic light scattering and sedimentation velocity measurements showed that the multimeric fraction displays a monodisperse distribution, with RH = 16 nm. When co-expressed together with amalgam the ectodomain of neurotactin copurified with it. Furthermore, both purified fractions of amalgam were shown to interact with Torpedo californica acetylcholinesterase, a structural homolog of neurotactin.  相似文献   

6.
Angiogenesis is essential for tissue repair and regeneration during wound healing but also plays important roles in many pathological processes including tumor growth and metastasis. The receptor protein tyrosine kinase Tie2 and its ligands, the angiopoietins, have important functions in the regulation of angiogenesis. Here, we report a detailed structural and functional characterization of the extracellular region of Tie2. Sequence analysis of the extracellular domain revealed an additional immunoglobulin-like domain resulting in a tandem repeat of immunoglobulin-like domains at the N terminus of the protein. The same domain organization was also found for the Tie1 receptor that shares a high degree of homology with Tie2. Based on structural similarities to other receptor tyrosine kinases and cell adhesion molecules, we demonstrate that the N-terminal two immunoglobulin-like domains of Tie2 harbor the angiopoietin-binding site. Using transmission electron microscopy we furthermore show that the extracellular domain of Tie receptors consists of a globular head domain and a short rod-like stalk that probably forms a spacer between the cell surface and the angiopoietin-binding site. Mutational analysis demonstrated that the head domain consists of the three immunoglobulin-like domains and the three epidermal growth factor-like modules and that the stalk is formed by the three fibronectin type III repeats. These findings might be of particular interest for drug development because Tie receptors are potential targets for treatment of angiogenesis-associated diseases.  相似文献   

7.
Thrombospondin (TS) is a multidomain, adhesive glycoprotein that associates with cells through multiple cell attachment sites. One of these has been located in or near the globular COOH-terminal region of TS by the monoclonal antibody (mAb) C6.7, which inhibits the attachment of human melanoma cells (G361) to TS. The epitope for C6.7 lies within the last 122 residues of the COOH-terminal domain of TS. This domain is distant from two known cell attachment sites in TS, namely the NH2-terminal heparin-binding domain and the CSVTCG sequences in the type I repeats, but is close to the RGDA sequence, an integrin-dependent cell attachment site. In order to separate the adhesive activity of the TS COOH-terminal domain from that of the RGD sequence, we have expressed the COOH-terminal 212 amino acids (residues 941-1152) of TS in Escherichia coli using the expression vector pRIT2T. The resultant fusion protein is effective in supporting G361 cell attachment even though it lacks the RGD sequence. In addition, the expressed protein inhibits adhesion of G361 cells to intact TS. mAb C6.7 blocks adhesion to the expressed TS COOH-terminal domain whereas GRGDSP and VTCG peptides are not inhibitory. These results show that the TS COOH-terminal domain contains a separate cell adhesion site, defined by mAb C6.7, that is distinct from the other adhesion sites of TS.  相似文献   

8.
Cadherins are a family of integral membrane glycoproteins that mediate homophilic, calcium-dependent cell adhesion in vertebrate species. The primary structures of six members of the cadherin family have recently been determined. The extracellular portion of these proteins is composed of five domains, the first of which is the most highly conserved among cadherins. Previous searches of protein sequence databases have revealed little or no sequence homology between cadherins and other proteins. Here we report that the first extracellular domain of cadherins exhibits substantial sequence homology with the amino termini of influenza strain A hemagglutinins. These regions of sequence homology have been shown to be functionally important in both cadherins and hemagglutinins. Our observations suggest that a functional domain of cadherins is conserved among other proteins.  相似文献   

9.
A family of artificial extracellular matrix proteins developed for application in small-diameter vascular grafts is used to examine the importance of cell-binding domain context on cell adhesion and spreading. The engineered protein sequences are derived from the naturally occurring extracellular matrix proteins elastin and fibronectin. While each engineered protein contains identical CS5 cell-binding domain sequences, the lysine residues that serve as cross-linking sites are either (i) within the elastin cassettes or (ii) confined to the ends of the protein. Endothelial cells adhere specifically to the CS5 sequence in both of these proteins, but cell adhesion and spreading are more robust on proteins in which the lysine residues are confined to the terminal regions of the chain. These results may be due to altered protein conformations that affect either the accessibility of the CS5 sequence or its affinity for the alpha(4)beta(1) integrin receptor on the endothelial cell surface. Amino acid choice outside the cell-binding domain can thus have a significant impact on the behavior of cells cultured on artificial extracellular matrix proteins.  相似文献   

10.
《The Journal of cell biology》1994,126(4):1099-1109
GP85 is one of the most common hemopoietic isoforms of the cell adhesion molecule, CD44. CD44(GP85) is known to contain at least one ankyrin-binding site within its 70 aa cytoplasmic domain and to bind hyaluronic acid (HA) with its extracellular domain. In this study we have mapped the ankyrin-binding domain of CD44(GP85) by deleting various portions of the cytoplasmic region followed by expression of these truncated cDNAs in COS cells. The results of these experiments indicate that the ankyrin-binding domain resides between amino acids 305 and 355. Biochemical analyses, using competition binding assays and a synthetic peptide (NGGNGT-VEDRKPSEL) containing 15 aa between aa 305 and aa 320, support the conclusion that this region is required for ankryin binding. Furthermore, we have constructed a fusion protein in which this 15 aa sequence of CD44(GP85) is transplanted onto another transmembrane protein which does not bind ankyrin. Our results show that this fusion protein acquires the ability to bind ankyrin confirming that the sequence (306NGGNGTVEDRKPSE320L) is a critical part of the ankryin-binding domain of CD44(GP85). In addition, we have demonstrated that deletion of this 15 aa ankyrin-binding sequence from CD44(GP85) results in a drastic reduction (> or = 90%) of HA-binding and HA-mediated cell adhesion. These findings strongly suggest that ankyrin binding to the cytoplasmic domain of CD44(GP85) plays a pivotal role in regulating hyaluronic acid-mediated cell-cell and cell- extracellular matrix interactions.  相似文献   

11.
Binding of the extracellular matrix molecule fibronectin to the integrin receptor alpha(5)beta(1) elicits downstream signaling pathways that modulate cell function. Fibronectin-alpha(5)beta(1) interaction occurs via the conserved RGD sequence in the tenth FIII (FIII10) domain of fibronectin. A synergistic site containing the sequence PHSRN in the adjacent FIII9 domain has also been identified. Here we investigate the function of the eighth FIII domain in integrin-mediated cell adhesion using a wide range of methods, including biochemical, biological, and biophysical assays of integrin binding, cell adhesion, and protein denaturation. Mutation of the FIII9 synergistic site (PHSRN to PHAAA) in FIII9-10 reduced the binding activity for integrin alpha(5)beta(1) to levels observed for FIII10 alone, but the corresponding mutant in FIII8-9-10 showed no loss of binding activity. Cell adhesion assays also demonstrated enhanced functional activity of constructs containing FIII8. Equilibrium chemical denaturation studies indicated that FIII8 confers conformational stability upon FIII9, but only if the exposed loops, PHSRN and VKNEED on FIII9 and FIII8, respectively, are intact. These results demonstrate that the loss of integrin binding activity, observed upon alteration of the PHSRN synergistic site of FIII9-10, results partly from a loss of conformational stability of FIII9. Our data suggest a mechanism for integrin alpha(5)beta(1)-fibronectin interaction, which in addition to the primary RGD binding event, involves a conformation-sensitive scanning by the integrin for accessible sites on the ligand, whereupon full activation of downstream signaling occurs.  相似文献   

12.
Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin-mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin-mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.  相似文献   

13.
G protein-coupled receptors (GPCRs) are involved in cell recognition and signaling and their function has been experimentally determined by ligand activation and site-directed mutagenesis. Structurally, GPCRs consist of an extracellular N-terminus and an intracellular C-terminus separated by seven helical transmembrane domains (TM7). The extracellular region is highly glycosylated. The intracellular region binds to G proteins. An epididymal GPCR, designated HE6 (for human epididymis-specific protein 6), is present in the stereocilia projecting from the apical domain of principal cells into the epididymal lumen. In conceptual terms, HE6 wears two hats: an unusually long extracellular region characteristic of cell adhesion proteins, and an intracellular region with binding affinity to G protein. The binding partner to the long extracellular region has not been identified. HE6 has another remarkable feature comparable to the GPCR calcium-independent receptor of alpha-latrotoxin, designated CIRL. Both HE6 and CIRL are endogenously cleaved into two pieces at the GPCR proteolytic site (GPS) located adjacent to TM1, the first of the seven transmembrane helices. One fragment of the heterodimer wears the cell adhesion hat; the other retains the typical characteristics of GPCRs. This proteolytic processing may be regarded as a mechanism of molecular compartmentalization of cell adhesion and G protein activation functions. The latter may engage a beta-arrestin-driven endocytic trafficking mechanism independent from the adhesive properties of the mucin extracellular domain. It is also conceivable that events taking place in the epididymal lumen can be surveyed by the long adhesive rod and subsequently coupled inside principal cells to a signaling cascade.  相似文献   

14.
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.  相似文献   

15.
The coxsackievirus and adenovirus receptor (CAR) is both a viral receptor and homophilic adhesion protein. The extracellular portion of CAR consists of two immunoglobulin (Ig)-like domains, each with a consensus sequence for N-glycosylation. We used chemical, genetic, and biochemical studies to show that both sites are glycosylated and contribute to the function of CAR. Although the glycosylation of CAR does not alter cell surface levels or junctional localization, it affects both adhesion and adenovirus infection in unique ways. CAR-mediated adhesion appears to require at least one site of glycosylation since cells expressing CAR without glycosylation do not cluster with each other. In contrast, glycosylation of the Ig-like domain proximal to the membrane is key to the cooperative behavior of adenovirus binding and infection. Contrary to the hypothesis that cooperativity improves viral infection, our data show that although glycosylation of the D2 domain is required for adenovirus cooperative binding, it has a negative consequence upon infection. This is the first report dissecting the adhesion and receptor activities of CAR, revealing that factors other than the binding interface play a significant role in the function of CAR. These data have important implications for both cancers with altered glycosylation states and cancer treatments using oncolytic adenovirus.  相似文献   

16.
Thrombospondin-1 (TSP-1) is an extracellular glycoprotein that is involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. It has been hypothesized that TSP-1 provides an adhesive matrix for osteosarcoma cells. Here we present data showing that TSP-1 can promote cell substrate adhesion to U2OS and SAOS cells through the alpha 4 beta 1 integrin. The dose-dependent adhesion to TSP-1 was inhibited by anti-integrin antibodies directed against the alpha 4 or beta 1 subunit, but not by control antibodies against other integrins. To localize the potential alpha 4 beta 1-binding site within the TSP-1 molecule, the protein was subjected to limited proteolysis with chymotrypsin in the absence of calcium. The stable 70-kDa core fragment produced under these conditions promoted alpha 4 beta 1-dependent osteosarcoma cell adhesion in a manner similar to that of the intact protein. Moreover adhesion experiments with neutralizing antibodies revealed that the adhesion was totally dependent on the alpha 4 beta 1 interaction. Further blocking experiments with potential inhibitory peptides revealed that the alpha 4 beta 1-mediated adhesion was not influenced by peptides containing the RGD sequence. Attachment to the 70-kDa fragment was strongly inhibited by the CS-1 peptide, which represents the most active recognition domain for alpha 4 beta 1 integrin in fibronectin. The present data provide evidence that TSP-1 contains an alpha 4 beta 1 integrin-binding site within the 70-kDa core region.  相似文献   

17.
Mammalian teeth are composed of hydroxyapatite crystals that are embedded in a rich extracellular matrix. This matrix is produced by only two cell types, the mesenchymal odontoblasts and the ectodermal ameloblasts. Ameloblasts secrete the enamel proteins amelogenin, ameloblastin, enamelin and amelotin. Odontoblasts secrete collagen type I and several calcium-binding phosphoproteins including dentin sialophosphoprotein, dentin matrix protein, bone sialoprotein and osteopontin. The latter four proteins have recently been grouped in the family of the SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) because they display similar gene structures and because they contain an RGD tripeptide sequence that binds to integrin receptors and thus mediates cell adhesion.We have prepared all the other tooth-specific proteins in recombinant form and examined whether they might also promote cell adhesion similar to the SIBLINGs. We found that only ameloblastin consistently mediated adhesion of osteoblastic and fibroblastic cells to plastic or titanium surfaces. The activity was dependent on the intact three-dimensional structure of ameloblastin and required de novo protein synthesis of the adhering cells. By deletion analysis and in vitro mutagenesis, the active site could be narrowed down to a sequence of 13 amino acid residues (VPIMDFADPQFPT) derived from exon 7 of the rat ameloblastin gene or exons 7-9 of the human gene. Kinetic studies and RNA interference experiments further demonstrated that this sequence does not directly bind to a cell surface receptor but that it interacts with cellular fibronectin, which in turn binds to integrin receptors.The identification of a fibronectin-binding domain in ameloblastin might permit interesting applications for dental implantology. Implants could be coated with peptides containing the active sequence, which in turn would recruit fibronectin from the patient's blood. The recruited fibronectin should then promote cell adhesion on the implant surface, thereby accelerating osseointegration of the implant.  相似文献   

18.
The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.  相似文献   

19.
Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells.  相似文献   

20.
Phylogenetic analysis of the cadherin superfamily.   总被引:4,自引:0,他引:4  
Cadherins are a multigene family of proteins which mediate homophilic calcium-dependent cell adhesion and are thought to play an important role in morphogenesis by mediating specific intercellular adhesion. Different lines of experimental evidence have recently indicated that the site responsible for mediating adhesive interactions is localized to the first extracellular domain of cadherin. Based upon an analysis of the sequence of this domain, I show that cadherins can be classified into three groups with distinct structural features. Furthermore, using this sequence information a phylogenetic tree relating the known cadherins was assembled. This is the first such tree to be published for the cadherins. One cadherin subtype, neural cadherin (N-cadherin), shows very little sequence divergence between species, whereas all other cadherin subtypes show more substantial divergence, suggesting that selective pressure upon this domain may be greater for N-cadherin than for other cadherins. Phylogenetic analysis also suggests that the gene duplications which established the main branches leading to the different cadherin subtypes occurred very early in their history. These duplications set the stage for the diversified superfamily we now observe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号