首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an improved method for white clover (Trifolium repens) transformation usingAgrobacterium tumefaciens. High efficiencies of transgenic plant production were achieved using cotyledons of imbibed mature seed. Transgenic plants were recovered routinely from over 50% of treated cotyledons. Thebar gene and phosphinothricin selection was shown to be a more effective selection system thannptII (kanamycin selection) oraadA (spectinomycin selection). White clover was transformed with the soybean auxin responsive promoter, GH3, fused to the GUS gene (-glucuronidase) to study the involvement of auxin in root development. Analysis of 12 independent transgenic plants showed that the location and pattern of GUS expression was consistent but the levels of expression varied. The level of GH3:GUS expression in untreated plants was enhanced specifically by auxin-treatment but the pattern of expression was not altered. Expression of the GH3:GUS fusion was not enhanced by other phytohormones. A consistent GUS expression pattern was evident in untreated plants presumably in response to endogenous auxin or to differences in auxin sensitivity in various clover tissues. In untreated plants, the pattern of GH3:GUS expression was consistent with physiological responses which are regarded as being auxin-mediated. For the first time it is shown that localised spots of GH3:GUS activity occurred in root cortical tissue opposite the sites where lateral roots subsequently were initiated. Newly formed lateral roots grew towards and through these islands of GH3:GUS expression, implying the importance of auxin in controlling lateral root development. Similarly, it is demonstrated for the first time that gravistimulated roots developed a rapid (within 1 h) induction of GH3:GUS activity in tissues on the non-elongating side of the responding root and this induction occurred concurrently with root curvature. These transgenic plants could be useful tools in determining the physiological and biochemical changes that occur during auxin-mediated responses.  相似文献   

2.
Cadmium interferes with auxin physiology and lignification in poplar   总被引:2,自引:0,他引:2  
Cadmium (Cd) is a phytotoxic heavy metal that causes rapid growth reduction. To investigate if Cd interferes with the metabolism of auxin, a major growth hormone in plants, poplars (Populus × canescens) expressing a heterologous GH3::GUS reporter gene were exposed to 50 μM Cd in hydroponic solutions. Growth, photosynthetic performance, lignification, peroxidase activity, auxin concentration, and GUS staining were determined in order to record the activities of GH3 enzymes in the stem apex, the elongation zone, wood in the zone of radial growth, and in roots. Cd-induced growth reductions were tissue-specific decreasing in the order: roots>wood>shoot elongation and leaf initiation, whereas Cd concentrations increased in the order: leaves相似文献   

3.
Schwalm K  Aloni R  Langhans M  Heller W  Stich S  Ullrich CI 《Planta》2003,218(2):163-178
Agrobacterium tumefaciens-induced plant tumors accumulate considerable concentrations of free auxin. To determine possible mechanisms by which high auxin concentrations are maintained, we examined the pattern of auxin and flavonoid distribution in plant tumors. Tumors were induced in transformants of Trifolium repens (L.), containing the beta-glucuronidase ( GUS)-fused auxin-responsive promoter ( GH3) or chalcone synthase ( CHS2) genes, and in transformants of Arabidopsis thaliana (L.) Heynh., containing the GUS-fused synthetic auxin response element DR5. Expression of GH3::GUS and DR5::GUS was strong in proliferating metabolically active tumors, thus suggesting high free-auxin concentrations. Immunolocalization of total auxin with indole-3-acetic acid antibodies was consistent with GH3::GUS expression indicating the highest auxin concentration in the tumor periphery. By in situ staining with diphenylboric acid 2-aminoethyl ester, by thin-layer chromatography, reverse-phase high-performance liquid chromatography, and two-photon laser-scanning microscopy spectrometry, tumor-specific flavones, isoflavones and pterocarpans were detected, namely 7,4'-dihydroxyflavone (DHF), formononetin, and medicarpin. DHF was the dominant flavone in high free-auxin-accumulating stipules of Arabidopsis leaf primordia. Flavonoids were localized at the sites of strongest auxin-inducible CHS2::GUS expression in the tumor that was differentially modulated by auxin in the vascular tissue. CHS mRNA expression changes corresponded to the previously analyzed auxin concentration profile in tumors and roots of tumorized Ricinus plants. Application of DHF to stems, apically pretreated with alpha-naphthaleneacetic acid, inhibited GH3::GUS expression in a fashion similar to 1-N-naphthyl-phthalamic acid. Tumor, root and shoot growth was poor in inoculated tt4(85) flavonoid-deficient CHS mutants of Arabidopsis. It is concluded that CHS-dependent flavonoid aglycones are possibly endogenous regulators of the basipetal auxin flux, thereby leading to free-auxin accumulation in A. tumefaciens-induced tumors. This, in turn, triggers vigorous proliferation and vascularization of the tumor tissues and suppresses their further differentiation.  相似文献   

4.
5.
Adventitious rooting is a quantitative genetic trait regulated by both environmental and endogenous factors. To better understand the physiological and molecular basis of adventitious rooting, we took advantage of two classes of Arabidopsis thaliana mutants altered in adventitious root formation: the superroot mutants, which spontaneously make adventitious roots, and the argonaute1 (ago1) mutants, which unlike superroot are barely able to form adventitious roots. The defect in adventitious rooting observed in ago1 correlated with light hypersensitivity and the deregulation of auxin homeostasis specifically in the apical part of the seedlings. In particular, a clear reduction in endogenous levels of free indoleacetic acid (IAA) and IAA conjugates was shown. This was correlated with a downregulation of the expression of several auxin-inducible GH3 genes in the hypocotyl of the ago1-3 mutant. We also found that the Auxin Response Factor17 (ARF17) gene, a potential repressor of auxin-inducible genes, was overexpressed in ago1-3 hypocotyls. The characterization of an ARF17-overexpressing line showed that it produced fewer adventitious roots than the wild type and retained a lower expression of GH3 genes. Thus, we suggest that ARF17 negatively regulates adventitious root formation in ago1 mutants by repressing GH3 genes and therefore perturbing auxin homeostasis in a light-dependent manner. These results suggest that ARF17 could be a major regulator of adventitious rooting in Arabidopsis.  相似文献   

6.
For this work, Lotus japonicus transgenic plants were constructed expressing a fusion reporter gene consisting of the genes beta-glucuronidase (gus) and green fluorescent protein (gfp) under control of the soybean auxin-responsive promoter GH3. These plants expressed GUS and GFP in the vascular bundle of shoots, roots and leafs. Root sections showed that in mature parts of the roots GUS is mainly expressed in phloem and vascular parenchyma of the vascular cylinder. By detecting GUS activity, we describe the auxin distribution pattern in the root of the determinate nodulating legume L. japonicus during the development of nodulation and also after inoculation with purified Nod factors, N-naphthylphthalamic acid (NPA) and indoleacetic acid (IAA). Differently than white clover, which forms indeterminate nodules, L. japonicus presented a strong GUS activity at the dividing outer cortical cells during the first nodule cell divisions. This suggests different auxin distribution pattern between the determinate and indeterminate nodulating legumes that may be responsible of the differences in nodule development between these groups. By measuring of the GFP fluorescence expressed 21 days after treatment with Nod factors or bacteria we were able to quantify the differences in GH3 expression levels in single living roots. In order to correlate these data with auxin transport capacity we measured the auxin transport levels by a previously described radioactive method. At 48 h after inoculation with Nod factors, auxin transport showed to be increased in the middle root segment. The results obtained indicate that L. japonicus transformed lines expressing the GFP and GUS reporters under the control of the GH3 promoter are suitable for the study of auxin distribution in this legume.  相似文献   

7.
Analysis of transgenic tobacco plants containing a tobacco hydroxyproline-rich glycoprotein HRGPnt3 gene promoter-β-glucuronidase (GUS) gene fusion (HRGPnt3-uidA) showed that this promoter is active not only in the early stages of initiation of lateral roots as previously described, but also in the initiation of adventitious roots, with similar selective expression in a subset of pericycle cells. HRGPnt3 is also induced during initiation of hairy roots following transformation by Agrobacterium rhizogenes. The auxin indole acetic acid (IAA) induces an increase in the number of characteristic discrete sites of HRGP-nt3 expression. It is shown that these sites are destined to form new root primordia from pericycle cells of both adventitious and main roots. Dose-dependent induction of root meristems by auxin overcomes the limitations of this naturally stochastic process and makes lateral root initiation amenable to biochemical analysis. Quiescent pericycle cells, which are developmentally arrested in the G2 phase of the cell cycle, rapidly progress into M phase upon mitogenic stimulation. Colchicine and nocodazole, which block completion of mitosis, inhibited the activation of the HRGPnt3 promoter but did not block auxin induction of parA, a marker for de-differentiation in leaf mesophyll cell-derived protoplasts. Hydroxyurea, which inhibits cell-cycle progression at the G1/S-phase transition and also blocks lateral root initiation, did not inhibit HRGPnt3 induction. Thus, HRGPnt3 induction precedes completion of the first cell division during primordium formation, and is one of the initial steps in a sequential program of gene expression activated upon stimulation of cell division for the development of a new meristem during lateral root initiation.  相似文献   

8.
9.
10.
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.  相似文献   

11.
12.
The tomato geneRSI-1 was previously identified as a molecular marker for auxin-induced lateral root initiation. We have further characterized the expression mode of theRSI-1 gene in tomato andArabidopsis thaliana. Northern blot analyses revealed that the gene was induced specifically by auxin in tomato roots and hypocotyls. For experiments with transgenic plants, the 5′ flanking region of theRSI-1 gene was linked to a GUS reporter gene, then transformed into tomato andArabidopsis. In these transgenic tomato plants, GUS activity was detected at the sites of initiation for lateral and adventitious roots. Expression of the fusion gene was auxin-dependent and tissue-specific. This was consistent with results from the northern blot analyses. In transgenicArabidopsis, the overall expression pattern of theRSI-GUS gene, including tissue specificity and auxin inducibility, was comparable to that in transgenic tomato seedlings. These results indicate that an identical regulatory mechanism for lateral root initiation might be conserved in both plants. Thus, the expression mode of theRSI-CUS gene inArabidopsis mutants defective in lateral root development should be investigated to provide details of this process.  相似文献   

13.
贺竹梅  杨貌仙   《广西植物》1991,(4):316-323+396
本文详细报道了从秃杉(Taiwania flousiana Gaussen)离体胚诱导不定芽、不定根及从无菌苗茎端培养再生植株的过程。诱导不定芽要求较低的蔗糖浓度(以3%最好);同时BA是必须的,在附加0.1—3 mg/1 BA的White培养基上,从离体胚的子叶或胚轴上诱导了不定芽的发生(以1 mg/1最好);NAA与BA结合使用,对不定芽诱导无促进作用;适当提高光照有利于不定芽的诱导。在诱导不定芽的同时,在子叶表面还观察到有许多无结构的“不定突起”。不定芽起源于子叶表皮下1—2层细胞。IBA对诱导离体胚上产生不定根效果较好。在有或无生长素的培养基上,从生长1月龄的无菌苗茎端培养获得了不定根的产生,在加有细胞分裂索的培养基上,从无菌苗上产生了腋芽。  相似文献   

14.
Adventitious rooting in Rumex plants, in which the root systems were in hypoxic conditions, differed considerably between two species. R. palustris, a species from frequently flooded river forelands, developed a large number of adventitious roots during hypoxia, whereas adventitious root formation was poor in R. thyrsiflorus, a species from seldom flooded dykes and river dunes. Adventitious rooting could also be evoked in aerated plants of both species by application of auxin (1-naphthaleneacetic acid or indoleacetic acid) to the leaves. The response to auxin was dose-dependent, but even high auxin doses could not stimulate R. thyrsiflorus to produce as many adventitious roots as R. palustris. Consequently, the difference between the species in the amount of adventitious root formation was probably genetically determined, and not a result of a different response to auxin. A prerequisite for hypoxia-induced adventitious root formation is the basipetal transport of auxin within the shoot, as specific inhibition of this transport by N-1-naphthylphthalamic acid severely decreased the number of roots in hypoxia-treated plants. It is suggested that hypoxia of the root system causes stagnation of auxin transport in the root system. This can lead to an accumulation of auxin at the base of the shoot rosette, resulting in adventitious root formation.  相似文献   

15.
Li Y  Hagen G  Guilfoyle TJ 《The Plant cell》1991,3(11):1167-1175
We constructed a chimeric gene consisting of a soybean small auxin up RNA (SAUR) promoter and leader sequence fused to an Escherichia coli [beta]-glucuronidase (GUS) open reading frame and a 3[prime] untranslated nopaline synthase sequence from Agrobacterium tumefaciens. This chimeric gene was used to transform tobacco by Agrobacterium-mediated transformation. In R2 etiolated transgenic tobacco seedlings, GUS expression occurred primarily in elongation regions of hypocotyls and roots. In green plants, GUS was expressed primarily in the epidermis and cortex of stems and petioles, as well as in elongation regions of anther filaments in developing flowers. GUS expression was responsive to exogenous auxin in the range of 10-8 to 10-3 M. During gravitropism and phototropism, the GUS activity became greater on the more rapidly elongating side of tobacco stems. Auxin transport inhibitors and other manipulations that blocked gravitropism also blocked the asymmetric distribution of GUS activity in gravistimulated stems. Light treatment of dark-grown seedlings resulted in a rapid decrease in GUS activity. Light-induced decay in GUS activity was fully reversed by application of auxin. Taken together, our results add support for the formation of an asymmetric distribution of auxin at sites of action during tropism.  相似文献   

16.
The radish varieties Cherry Belle and Long White Icicle wereused to investigate the role of the shoot and the effects ofsynthetic growth promoters in controlling cambial activity inthe seedling axis. Development was compared in excised roots, roots with hypocotylsattached and intact seedlings cultured aseptically on a nutrientmedium. No cambial divisions were seen in isolated radicleswhich had been cultured for ten days following excision butretention of hypocotyl tissue or the entire shoot resulted incambial activity and the production of secondary vascular tissues.Enriching the culture medium by raising the sucrose conantrationto 8% and including 10–5 M indol-3yl acetic acid (IAA)5 x 10–6 M 6-benzylaminopurine (BA) and 5 x 10–4Minositol enhanced root thickening, increasing stele and xylemdiameters in roots cultured both with and without attached shoottissues. The effects of shoot tissues and enrichment of themedium were additive. The effects of auxin, cytokinin and gibberellin (gibberellicacid, GA2) were also studied on daxpitated seedlings. BA wasmuch more effective in inducing cell divisions in the hypocotylthan either IAA or GA supplied separately but a mixture of IAA+GAalso produced clearly defined arcs of cambial tissue. Littlesecondary tissue had been produced after seven days' treatment,and stelar enlargement was due to the development of a cambialzone and cell expansion in the primary tissues. Only minor differencesin response were observed between the two varieties. No stimulation of storage organ development occurred when auxin,cytokinin or inositol was inwrporated into the inorganic culturesolution in which plants of Cherry Belle were grown. Rnphanus sarivus, radish, storage organ, cambial activity, growth promoters, indol-3-ylacetic acid, 6-benzylaminopurine, gibberellic acid  相似文献   

17.
Ge L  Chen H  Jiang JF  Zhao Y  Xu ML  Xu YY  Tan KH  Xu ZH  Chong K 《Plant physiology》2004,135(3):1502-1513
There are very few root genes that have been described in rice as a monocotyledonous model plant so far. Here, the OsRAA1 (Oryza sativa Root Architecture Associated 1) gene has been characterized molecularly. OsRAA1 encodes a 12.0-kD protein that has 58% homology to the AtFPF1 (Flowering Promoting Factor 1) in Arabidopsis, which has not been reported as modulating root development yet. Data of in situ hybridization and OsRAA1::GUS transgenic plant showed that OsRAA1 expressed specifically in the apical meristem, the elongation zone of root tip, steles of the branch zone, and the young lateral root. Constitutive expression of OsRAA1 under the control of maize (Zea mays) ubiquitin promoter resulted in phenotypes of reduced growth of primary root, increased number of adventitious roots and helix primary root, and delayed gravitropic response of roots in seedlings of rice (Oryza sativa), which are similar to the phenotypes of the wild-type plant treated with auxin. With overexpression of OsRAA1, initiation and growth of adventitious root were more sensitive to treatment of auxin than those of the control plants, while their responses to 9-hydroxyfluorene-9-carboxylic acid in both transgenic line and wild type showed similar results. OsRAA1 constitutive expression also caused longer leaves and sterile florets at the last stage of plant development. Analysis of northern blot and GUS activity staining of OsRAA1::GUS transgenic plants demonstrated that the OsRAA1 expression was induced by auxin. At the same time, overexpression of OsRAA1 also caused endogenous indole-3-acetic acid to increase. These data suggested that OsRAA1 as a new gene functions in the development of rice root systems, which are mediated by auxin. A positive feedback regulation mechanism of OsRAA1 to indole-3-acetic acid metabolism may be involved in rice root development in nature.  相似文献   

18.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

19.
A 13.8 kb DNA sequence containing the promoters and the structural genes of the Arabidopsis thaliana nit2/nit1/nit3 gene cluster has been isolated and characterized. The coding regions of nit2, nit1 and nit3 spanned 1.9, 1.8 and 2.1 kb, respectively. The architecture of the three genes is highly conserved. Each isoform consists of five exons separated by four introns. The introns are very similar with respect to size and position, but differ considerably in sequence composition. In contrast to the coding sequences the three promoters are very different in sequence, size and in their repertoire of cis elements, suggesting differential regulation of the three nitrilase isoenzymes by the developmental program of the plant and by diverse environmental factors. The nit1 promoter was subjected to analysis in planta. Translational fusions placing the nit1 full-length promoter and a series of 5-deletion fragments in front of the uidA gene encoding -glucuronidase (GUS) were used for Agrobacterium tumefaciens-mediated transformation of Nicotiana tabacum. GUS expression was highest in fully expanded leaves and in the shoot apex as well as in the apices of developing lateral buds, whereas the GUS activity displayed by developing younger leaflets was restricted to the tips of the expanding leaves. Within the root tissue GUS expression was restricted to the root tips and the tips of newly forming lateral roots. Structural features of the nitrilase gene family and nitrilase gene expression patterns are discussed in context with current knowledge of auxin biosynthesis and auxin effects on different tissues.  相似文献   

20.
SUMMARY The shoot is a repeated structure made up of stems and leaves and is the basic body plan in land plants. Vascular plants form a shoot in the diploid generation, whereas nonvascular plants such as mosses form a shoot in the haploid generation. It is not clear whether all land plants use similar molecular mechanisms in shoot development or how the genetic networks for shoot development evolved. The control of auxin distribution, especially by polar auxin transport, is essential for shoot development in flowering plants. We did not detect polar auxin transport in the gametophytic shoots of several mosses, but did detect it in the sporophytes of mosses without shoot structure. Treatment with auxin transport inhibitors resulted in abnormal embryo development, as in flowering plants, but did not cause any morphological changes in the haploid shoots. We fused the soybean auxin-inducible promoter GH3 with a GUS reporter gene and used it to indirectly detect auxin distribution in the moss Physcomitrella patens . An auxin transport inhibitor NPA did not cause any changes in the putative distribution of auxin in the haploid shoot. These results indicate that polar auxin transport is not involved in haploid shoot development in mosses and that shoots in vascular plants and mosses are most likely regulated differently during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号