首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.  相似文献   

2.
We have used NMR methods to determine the structure of the calcium complex of complement-like repeat 3 (CR3) from the low density lipoprotein receptor-related protein (LRP) and to examine its specific interaction with the receptor binding domain of human alpha(2)-macroglobulin. CR3 is one of eight related repeats that constitute a major ligand binding region of LRP. The structure is very similar in overall fold to homologous complement-like repeat CR8 from LRP and complement-like repeats LB1, LB2, and LB5 from the low density lipoprotein receptor and contains a short two-strand antiparallel beta-sheet, a one turn alpha-helix, and a high affinity calcium site with coordination from four carboxyls and two backbone carbonyls. The surface electrostatics and topography are, however, quite distinct from each of these other repeats. Two-dimensional (1)H,(15)N-heteronuclear single quantum coherence spectra provide evidence for a specific, though relatively weak (K(d) approximately 140 microM), interaction between CR3 and human alpha2-macroglobulin receptor binding domain that involves a contiguous patch of surface residues in the central region of CR3. This specific interaction is consistent with a mode of LRP binding to ligands that uses contributions from more than one domain to generate a wide array of different binding sites, each with overall high affinity.  相似文献   

3.
The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that recognizes more than 30 different ligands and plays important roles in protease and lipoprotein catabolism. Ligand binding to newly synthesized LRP is modulated by the receptor-associated protein (RAP), an endoplasmic reticulum-resident protein that functions as a molecular chaperone and prevents ligands from associating with LRP via an allosteric-type mechanism. RAP is a multidomain protein that contains two independent LRP binding sites, one located at the amino-terminal portion of the molecule and the other at the carboxyl-terminal portion of the molecule. The objective of the present investigation was to gain insight into how these two regions of RAP interact with LRP and function to modulate its ligand binding properties. These objectives were accomplished by random mutagenesis of RAP, which identified two critical lysine residues, Lys-256 and Lys-270, within the carboxyl-terminal domain that are necessary for binding of this region of RAP to LRP and to heparin. RAP molecules in which either of these two lysine residues was mutated still bound LRP but with reduced affinity. Furthermore, the mutant RAPs were significantly impaired in their ability to inhibit alpha(2)M* binding to LRP via allosteric mechanisms. In contrast, the mutant RAP molecules were still effective at inhibiting uPA.PAI-1 binding to LRP. These results confirm that both LRP binding sites within RAP cooperate to inhibit ligand binding via an allosteric mechanism.  相似文献   

4.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds several ligands including the activated form of the pan-proteinase inhibitor alpha(2)-macroglobulin (alpha(2)M*) and amyloid precursor protein, two ligands genetically linked to Alzheimer's disease. To delineate the contribution of LRP to this disease, it will be necessary to identify the sites on this receptor which are responsible for recognizing these and other ligands to assist in the development of specific inhibitors. Structurally, LRP contains four clusters of cysteine-rich repeats, yet studies thus far suggest that only two of these clusters (clusters II and IV) bind ligands. Identifying binding sites within LRP for certain ligands, such as alpha(2)M*, has proven to be difficult. To accomplish this, we mapped the binding site on LRP for two inhibitors of alpha(2)M* uptake, monoclonal antibody 8G1 and an amino-terminal fragment of receptor-associated protein (RAP D1D2). Surprisingly, the inhibitors recognized different clusters of ligand binding repeats: 8G1 bound to repeats within cluster I, whereas the RAP fragment bound to repeats within cluster II. A recombinant LRP mini-receptor containing the repeats from cluster I along with three ligand binding repeats from cluster II was effective in mediating the internalization of (125)I-labeled alpha(2)M*. Together, these studies indicate that ligand binding repeats from both cluster I and II cooperate to generate a high affinity binding site for alpha(2)M*, and they suggest a strategy for developing specific inhibitors to block alpha(2)M* binding to LRP by identifying molecules capable of binding repeats in cluster I.  相似文献   

5.
LDL-receptor-related protein 6 (LRP6), alongside Frizzled receptors, transduces Wnt signaling across the plasma membrane. The LRP6 ectodomain comprises four tandem β-propeller-EGF-like domain (PE) pairs that harbor binding sites for Wnt morphogens and their antagonists including Dickkopf 1 (Dkk1). To understand how these multiple interactions are integrated, we combined crystallographic analysis of the third and fourth PE pairs with electron microscopy (EM) to determine the complete ectodomain structure. An extensive inter-pair interface, conserved for the first-to-second and third-to-fourth PE interactions, contributes to a compact platform-like architecture, which is disrupted by mutations implicated in developmental diseases. EM reconstruction of the LRP6 platform bound to chaperone Mesd exemplifies a binding mode spanning PE pairs. Cellular and binding assays identify overlapping Wnt3a- and Dkk1-binding surfaces on the third PE pair, consistent with steric competition, but also suggest a model in which the platform structure supports an interplay of ligands through multiple interaction sites.  相似文献   

6.
The low-density lipoprotein receptor-related protein (LRP) is a large surface receptor that mediates binding and internalization of a large number of structurally and functionally unrelated ligands. The ligand binding sites are located in clusters of complement-type repeats (CR), where the general absence of mutual binding competition suggests that different ligands map to distinct sites. Binding of alpha(2)-macroglobulin-protease complexes to the LRP is mediated by the receptor binding domain (RBD) of alpha(2)-macroglobulin (alpha(2)M). To determine the major binding epitope(s) in the LRP, we generated a complete set of tandem CR proteins spanning the second cluster of CR domains, and identified a binding site for alpha(2)M in the N-terminal part of the cluster comprising CR3-CR6, using ligand blotting and surface plasmon resonance (SPR) analysis. The specific site involved in alpha(2)M recognition resides in the fourth CR domain, CR4, whereas another site is identified in CR5. An acidic epitope in CR4 is identified as important for binding alpha(2)M by mutagenesis and SPR analysis. The formation of the complex between the rat alpha(1)-macroglobulin RBD and CR domain pairs is characterized by analytical size-exclusion chromatography, which demonstrates a sufficiently strong interaction between the alpha(1)M RBD and CR34 or CR45 for the isolation of a complex.  相似文献   

7.
The low density lipoprotein receptor-related protein (LRP) is a scavenger receptor that binds to many proteins, some of which trigger signal transduction. Receptor-recognized forms of alpha(2)-Macroglobulin (alpha(2)M*) bind to LRP, but the pattern of signal transduction differs significantly from that observed with other LRP ligands. For example, neither Ni(2+) nor the receptor-associated protein, which blocks binding of all known ligands to LRP, block alpha(2)M*-induced signal transduction. In the current study, we employed alpha(2)-macroglobulin (alpha(2)M)-agarose column chromatography to purify cell surface membrane binding proteins from 1-LN human prostate cancer cells and murine macrophages. The predominant binding protein purified from 1-LN prostate cancer cells was Grp 78 with small amounts of LRP, a fact that is consistent with our previous observations that there is little LRP present on the surface of these cells. The ratio of LRP:Grp 78 is much higher in macrophages. Flow cytometry was employed to demonstrate the presence of Grp 78 on the cell surface of 1-LN cells. Purified Grp 78 binds to alpha(2)M* with high affinity (K(d) approximately 150 pm). A monoclonal antibody directed against Grp 78 both abolished alpha(2)M*-induced signal transduction and co-precipitated LRP. Ligand blotting with alpha(2)M* showed binding to both Grp 78 and LRP heavy chains in these preparations. Use of RNA interference to silence LRP expression had no effect on alpha(2)M*-mediated signaling. We conclude that Grp 78 is essential for alpha(2)M*-induced signal transduction and that a "co-receptor" relationship exists with LRP like that seen with several other ligands and receptors such as the uPA/uPAR (urinary type plasminogen activator or urokinase/uPA receptor) system.  相似文献   

8.
The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.  相似文献   

9.
Ligand binding of the low-density lipoprotein (LDL) receptor family is mediated by complement-type repeats (CR) each comprising a binding pocket for a single basic amino acid residue. It has been proposed that at least two CRs are required for high-affinity interaction by utilising two spatially distinct lysine residues on the ligand surface. LDL receptor-related protein (LRP) mediates the cellular uptake of a multitude of ligands, some of which bind LRP with a relatively low affinity suggesting a suboptimal positioning of the two critical lysines. We now addressed the role of the two critical lysines not only in LRP binding but also in LRP-dependent endocytosis. Variants of the third domain (D3) of receptor-associated protein (RAP) were created carrying lysine to alanine or arginine replacements at the putative contact residues K253, K256 and K270. Surface plasmon resonance revealed that replacement of K253 did not affect high-affinity LRP binding at all, whereas replacement of either K256 or K270 markedly reduced the affinity by approximately 10-fold. Binding was abolished when both lysines were replaced. Substitution by either alanine or arginine exerted an almost identical effect on LRP binding. This suggests that despite their positive charge, arginine residues do not support receptor binding at all. Confocal microscopy and flow cytometry studies surprisingly revealed that the single mutants were still taken up and still competed for the uptake of full length RAP despite their receptor binding defect. We therefore propose that the presence of only one of the two critical lysines is sufficient to drive endocytosis.  相似文献   

10.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor family, mediates the internalization of a diverse set of ligands. The ligand binding sites are located in different regions of clusters consisting of approximately 40 residues, cysteine-rich complement-type repeats (CRs). The 39-40-kDa receptor-associated protein, a folding chaperone/escort protein required for efficient transport of functional LRP to the cell surface, is an antagonist of all identified ligands. To analyze the multisite inhibition by RAP in ligand binding of LRP, we have used an Escherichia coli expression system to produce fragments of the entire second ligand binding cluster of LRP (CR3-10). By ligand affinity chromatography and surface plasmon resonance analysis, we show that RAP binds to all two-repeat modules except CR910. CR10 differs from other repeats in cluster II by not containing a surface-exposed conserved acidic residue between Cys(IV) and Cys(V). By site-directed mutagenesis and ligand competition analysis, we provide evidence for a crucial importance of this conserved residue for RAP binding. We provide experimental evidence showing that two adjacent complement-type repeats, both containing a conserved acidic residue, represent a minimal unit required for efficient binding to RAP.  相似文献   

11.
Low-density lipoprotein receptor-related protein (LRP) is an endocytic receptor that binds multiple distinct ligands, including blood coagulation factor VIII (FVIII). FVIII is a heterodimeric multidomain protein that consists of a heavy chain (domains A1, a1, A2, a2, and B) and a light chain (domains a3, A3, C1, and C2). Both chains contribute to high-affinity interaction with LRP. One LRP-interactive region has previously been located in the C2 domain, but its affinity is low in comparison with that of the entire FVIII light chain. We now have compared a variety of FVIII light chain derivatives with the light chain of its homolog FVa for LRP binding. In surface plasmon resonance studies employing LRP cluster II, the FVa and FVIII light chains proved different in that only FVIII displayed high-affinity binding. Because the FVIII a3-A3-C1 fragment was effective in associating with LRP, this region was explored for structural elements that are exposed but not conserved in FV. Competition studies using synthetic peptides suggested that LRP binding involves the FVIII-specific region Lys(1804)-Ala(1834) in the A3 domain. In line with this observation, LRP binding was inhibited by a recombinant antibody fragment that specifically binds to the FVIII sequence Glu(1811)-Lys(1818). The role of this sequence in LRP binding was further tested using a FVIII/FV chimera in which sequence Glu(1811)-Lys(1818) was replaced with the corresponding sequence of FV. Although this chimera still displayed residual binding to LRP cluster II, its affinity was reduced. This suggests that multiple sites in FVIII contribute to high-affinity LRP binding, one of which is the FVIII A3 domain region Glu(1811)-Lys(1818). This suggests that LRP binding to the FVIII A3 domain involves the same structural elements that also contribute to the assembly of FVIII with FIXa.  相似文献   

12.
The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and gp330, two members of the low density lipoprotein receptor gene family, share a multitude of cysteine-rich repeats. LRP has been shown to act as an endocytosis-mediating receptor for several ligands, including protease-antiprotease complexes and plasma lipoproteins. The former include alpha 2-macroglobulin-protease complexes and plasminogen activator inhibitor-activator complexes. The latter include chylomicron remnant-like particles designated beta-very low density lipoproteins (beta-VLDL) complexed with apoprotein E or lipoprotein lipase. The binding specificity of gp330 is unknown. In the current studies we show that gp330 from rat kidney membranes binds several of these ligands on nitrocellulose blots. We also show that both LRP and gp330 bind an additional ligand, bovine lactoferrin, which is known to inhibit the hepatic clearance of chylomicron remnants. Lactoferrin blocked the LRP-dependent stimulation of cholesteryl ester synthesis in cultured human fibroblasts elicited by apoprotein E-beta-VLDL or lipoprotein lipase-beta-VLDL complexes. Cross-competition experiments in fibroblasts showed that the multiple ligands recognize at least three distinct, but partially overlapping sites on the LRP molecule. Binding of all ligands to LRP and gp330 was inhibited by the 39-kDa protein, which co-purifies with the two receptors, suggesting that the 39-kDa protein is a universal regulator of ligand binding to both receptors. The correlation of the inhibitory effects of lactoferrin in vivo and in vitro support the notion that LRP functions as a chylomicron remnant receptor in liver. LRP and gp330 share a multiplicity of binding sites, and both may function as endocytosis-mediating receptors for a large number of ligands in different organs.  相似文献   

13.
Low-density lipoprotein receptor-related protein (LRP) binds and internalizes multiple ligands that are structurally and functionally diverse. However, the effects of LRP on cellular phenotype remain unclear. To study LRP in human astrocytic tumor cells, we designed LRP antisense RNA expression constructs in which the antisense cDNA fragment was expressed under the control of the cytomegalovirus (CMV) promoter. U-1242 MG astrocytic tumor cells were transfected with the antisense constructs and cloned from single cells to yield multiple cell lines with decreased LRP expression. Further studies were performed with two cell lines in which LRP antigen was completely eliminated (L(alpha)42) or substantially decreased (Lalpha47), as determined by Western blot analysis. Untransfected U-1242 MG cells and cells that were stably transfected with empty vector (pBK-CMV) bound activated alpha2-macroglobulin (alpha2M) in a specific and saturable manner. The Bmax was about 5000 receptors/cell. Lalpha42 cells did not bind alpha2M, and binding was decreased by >60% in Lalpha47 cells. Lalpha42 and Lalpha47 cells also demonstrated reduced susceptibility to the cytotoxin, Pseudomonas exotoxin A, and accumulated greatly increased levels of urokinase-type plasminogen activator (uPA) in conditioned medium. The accumulation of uPA demonstrates a major role for LRP in the catabolism of this protein in astrocytic tumor cells. The LRP-deficient cell lines, developed using antisense technology, represent a new model system for studying LRP function in astrocytes.  相似文献   

14.
A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 MuSK antibodies will also contribute to the reduced AChR density and neuromuscular dysfunction in myasthenia patients with MuSK antibodies.  相似文献   

15.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

16.
The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.  相似文献   

17.
Identifying potential ligand binding sites on a protein surface is an important first step for targeted structure-based drug discovery. While performing control experiments with Escherichia coli peptide deformylase (PDF), we noted that the organic solvents used to solubilize some ligands perturbed many of the same resonances in PDF as the small molecule inhibitors. To further explore this observation, we recorded (15)N HSQC spectra of E. coli peptide deformylase (PDF) in the presence of trace quantities of several simple organic solvents (acetone, DMSO, ethanol, isopropanol) and identified their sites of interaction from local perturbation of amide chemical shifts. Analysis of the protein surface structure revealed that the ligand-induced shift perturbations map to the active site and one additional surface pocket. The correlation between sites of solvent and inhibitor binding highlights the utility of organic solvents to rapidly and effectively validate and characterize binding sites on proteins prior to designing a drug discovery screen. Further, the solvent-induced perturbations have implications for the use of organic solvents to dissolve candidate ligands in NMR-based screens.  相似文献   

18.
We investigated the effect of plasminogen (Plg) on the internalization of recombinant soluble melanotransferrin (sMTf) using U87 human glioblastoma cells and murine embryonic fibroblasts (MEF) deficient in the low-density lipoprotein receptor-related protein (LRP). Using biospecific interaction analysis, both Glu- and Lys-Plg were shown to interact with immobilized sMTf. The binding of sMTf at the cell surface increased in the presence of both forms of Plg in control and in LRP-deficient MEF cells, whereas the uptake was strongly stimulated only by Lys-Plg in control MEF and U87 cells. In addition, in the presence of Lys-Plg, the internalization of sMTf was a saturable process, sensitive to temperature and dependent on the integrity of lysine residues. The addition of the receptor-associated protein, lactoferrin and aprotinin, as well as a monoclonal antibody (mAb) directed against LRP, inhibited the Lys-Plg-dependent uptake of sMTf. These results suggest an important role for LRP in this process. In addition, using binding and uptake assays in the presence of anti-annexin II mAb, we showed that annexin II might be responsible for the initial binding of sMTf in the presence of Plg. Our results suggest a Plg-mediated internalization mechanism for the clearance of sMTf via annexin II and LRP.  相似文献   

19.
Entry of anthrax edema factor (EF) and lethal factor (LF) into the cytosol of eukaryotic cells depends on their ability to translocate across the endosomal membrane in the presence of anthrax protective antigen (PA). Here we report attributes of the N-terminal domains of EF and LF (EF(N) and LF(N), respectively) that are critical for their initial interaction with PA. We found that deletion of the first 36 residues of LF(N) had no effect on its binding to PA or its ability to be translocated. To map the binding site for PA, we used the three-dimensional structure of LF and sequence similarity between EF and LF to select positions for mutagenesis. We identified seven sites in LF(N) (Asp-182, Asp-187, Leu-188, Tyr-223, His-229, Leu-235, and Tyr-236) where mutation to Ala produced significant binding defects, with H229A and Y236A almost completely eliminating binding. Homologous mutants of EF(N) displayed nearly identical defects. Cytotoxicity assays confirmed that the LF(N) mutations impact intoxication. The seven mutation-sensitive amino acids are clustered on the surface of LF and form a small convoluted patch with both hydrophobic and hydrophilic character. We propose that this patch constitutes the recognition site for PA.  相似文献   

20.
Alpha-2-macroglobulin (α2-MG) is a high-molecular weight glycoprotein with a broad spectrum of regulatory functions. As was shown earlier, covalent binding of α2-MG to proteases results in its conformational transformation, which allows α2-MG to transport additionally certain types of cytokines, attached via non-covalent interactions. Our results have shown that the spectrum of proteins exhibiting additional binding to the transformed α2-MG is rather broad and includes three classes of immunoglobulins, albumin, both types of lipoproteins, plasmin, some cytokines, and even pregnancy-associated alpha-2-glycoprotein (a structural homologue of α2-MG). The main ligands are albumin, IgG, plasmin, and to a lesser extent, lipoproteins. Interaction of native α2-MG with both acidic and weakly alkaline proteases results in neutralization net charge of the formed complex at pH, characteristic for internal media of the body. Addition of LRP (the low density lipoprotein related protein) increased the amount of electrically neutral complexes at pH 7.4. We believe that the transformed α2-MG (possibly in the complex with other effector proteins) employs similar mechanism for quick adsorption on the cell surface; after binding to LRP and repeated neutralization of the net charge at physiological pH, it “falls” through into the cell membrane and realize its regulatory functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号