首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that urotensin II induced biphasic (brief- and long-lasting) contractions and the brief contraction was mediated by acetylcholine release from ganglionic cholinergic neurons in a segment of guinea-pig ileum. In the present work, we studied the mechanism contributing to long-lasting contractions induced by urotensin II. Treatment with 0.1 microM tetrodotoxin, 300 nM omega-conotoxin GVIA (an inhibitor of N-type Ca2+ channels) and 10 microM indomethacin (an inhibitor of cyclooxygenases) markedly inhibited 100 nM urotensin II-induced long-lasting contractions. The addition of 1 microM prostaglandin F2alpha (PGF2alpha) caused a limited brief contraction following long-lasting contraction, while 1 microM PGE2 induced marked biphasic contractions. Treatment with neurotoxins inhibited the long-lasting contractions induced by PGF2alpha and PGE2 without changing the PGE2-induced brief contractions. Treatment with 1 microM atropine markedly inhibited the urotensin II- and PGF2alpha-induced long-lasting contractions, but was less effective on the PGE2 responses. Treatment with a phospholipase A2 inhibitor decreased the urotensin II-induced contractions. These findings suggest that urotensin II induces, at least partially, long-lasting contractions via PG-sensitive cholinergic neurons and muscarinic acetylcholine receptors in the ileum.  相似文献   

2.
At maximally effective concentrations, the opiate peptides β-endorphin (240 nm) and Met-enkephalin (1400 nM) virtually abolished the contractions induced by a maximally effective concentration of 60 nM neurotensin (NT), either in the longitudinal smooth muscle strip or in the intact segment of guinea-pig ileum. This inhibitory effect was concentration-dependent and was totally blocked by naloxone at 100 nM. In contrast a maximally effective concentration of somatostatin (60 nM) partially inhibited (50–60%) the contraction induced by 60 nM NT in either smooth muscle preparation. Somatostatin inhibition was concentration-dependent and was not blocked by naloxone at 100 nM. Atropine at 100 nM inhibited by 50% the contractions induced by 60 nM NT in the intact segment of guinea-pig ileum. The remaining contraction was abolished by β-endorphin and Met-enkephalin and partially reduced by somatostatin. Our results confirm that NT-induced contractions in the guinea-pig ileum are neurogenic and involve a cholinergic as well as a non-cholinergic component. Furthermore, we show that the release of mediators from both components  相似文献   

3.
In the present study, we investigated the effect of the crude latex of Carica papaya L. (CPX) on isolated guinea pig ileal strips. CPX (0.5-512 microg/ml) caused concentration-dependent contraction of ileal strips suspended in Tyrode solution. The concentration of atropine (0.69 microM) that significantly blocked the contractile effect of acetylcholine on the isolated guinea pig ileum showed no significant effect on CPX- and histamine-induced contractions of the ileal strips. Mepyramine (87.6 nM) significantly blocked the contractile effect of histamine and CPX on the ileum. The same concentration of mepyramine, however, had no significant effect on acetylcholine-induced contraction of the isolated ileal strips. Removal of Ca2+ from the bathing medium abolished ileal contractions induced by acetylcholine, histamine and CPX. All the test substances were able to provoke ileal contractions after replacement of the Ca(2+)-free solution with Tyrode solution. Furthermore, 10(-5) M of nifedipine, a Ca(2+)-entry antagonist, reversibly inhibited the contractile effect of all the test substances on the ileal strips. Results of this study together appear to show that CPX-induced contraction of the isolated guinea pig ileum is mediated via H1-receptors and dependent on extracellular Ca2+ influx.  相似文献   

4.
To determine if functional cholinergic innervation occurs in the frog duodenum or not, the effects of exogenous acetylcholine and electrical transmural stimulation, the contractile activity of an acid extract from the frog duodenum, and the distribution of acetylcholinesterase (AChE) activity in the wall of the frog duodenum were investigated. Acetylcholine caused non-sustained contraction in a dose-dependent manner (100 nM-1 mM). The ED50 value was 17 +/- 2.4 microM. Atropine (500 nM) shifted the dose-response curve for acetylcholine parallel to the right. Transmural stimulation of the frog duodenum caused frequency-dependent (0.5-50 Hz) contraction which was not decreased by atropine (500 nM) at all. The acid extract from the frog duodenum caused contraction of a longitudinal muscle strip of guinea-pig ileum but atropine (500 nM) had no significant effect on the contraction. Only a little AChE activity was found in Auerbach's plexus of the frog duodenum compared with that of the rat ileum. These results suggest that a cholinergic nerve is present in the frog duodenum but its physiological significance is very small.  相似文献   

5.
The effects of various peptides on the isolated pulmonary artery   总被引:2,自引:0,他引:2  
H Obara  M Kusunoki  M Mori  K Mikawa  S Iwai 《Peptides》1989,10(1):241-243
Helical strips of pulmonary arteries from rabbits were tested for their responses to the following peptides: neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), substance P (SP), cholecystokinin-octapeptide (CCK), somatostatin (SS), bombesin, neurotensin and gastrin. SP, in the absence of active base-tension, and NPY both induced concentration-dependent contractions, while VIP and SP, in the presence of active base-tone, and CCK induced relaxation. The pD2 (-log ED50) was in the order of NPY greater than SP and SP greater than CCK greater than VIP. SS, bombesin, NT and gastrin had no effect. These findings suggest peptidergic involvement in the vessels.  相似文献   

6.
High-voltage activated Ca channels in tiger salamander cone photoreceptors were studied with nystatin-permeabilized patch recordings in 3 mM Ca2+ and 10 mM Ba2+. The majority of Ca channel current was dihydropyridine sensitive, suggesting a preponderance of L- type Ca channels. However, voltage-dependent, incomplete block (maximum 60%) by nifedipine (0.1-100 microM) was evident in recordings of cones in tissue slice. In isolated cones, where the block was more potent, nifedipine (0.1-10 microM) or nisoldipine (0.5-5 microM) still failed to eliminate completely the Ca channel current. Nisoldipine was equally effective in blocking Ca channel current elicited in the presence of 10 mM Ba2+ (76% block) or 3 mM Ca2+ (88% block). 15% of the Ba2+ current was reversibly blocked by omega-conotoxin GVIA (1 microM). After enhancement with 1 microM Bay K 8644, omega-conotoxin GVIA blocked a greater proportion (22%) of Ba2+ current than in control. After achieving partial block of the Ba2+ current with nifedipine, concomitant application of omega-conotoxin GVIA produced no further block. The P-type Ca channel blocker, omega-agatoxin IVA (200 nM), had variable and insignificant effects. The current persisting in the presence of these blockers could be eliminated with Cd2+ (100 microM). These results indicate that photoreceptors express an L-type Ca channel having a distinguishing pharmacological profile similar to the alpha 1D Ca channel subtype. The presence of additional Ca channel subtypes, resistant to the widely used L-, N-, and P-type Ca channel blockers, cannot, however, be ruled out.  相似文献   

7.
Presynaptic nicotinic acetylcholine receptors likely play a modulatory role in the nerve terminal. Using laser-scanning confocal microscopy, we have characterized physiological responses obtained on activation of presynaptic nicotinic receptors by measuring calcium changes in individual nerve terminals (synaptosomes) isolated from the rat corpus striatum. Nicotine (500 nM) induced Ca(2+) changes in a subset (10-25%) of synaptosomes. The Ca(2+) responses were dependent on extracellular Ca(2+) and desensitized very slowly (several minutes) on prolonged exposure to agonist. The nicotine-induced Ca(2+) responses were dose-dependent and were completely blocked by dihydro-beta-erythroidine (5 microM), differentially affected by mecamylamine (10 microM) and alpha-conotoxin MII (100 nM), and not affected by alpha-bungarotoxin (500 nM). Immunocytochemical studies using well-characterized monoclonal antibodies revealed the presence of the alpha4 and alpha3/alpha5 nicotinic subunits. The nicotine-induced responses were unaffected by prior depolarization or by a mixture of Ca(2+) channel toxins including omega-conotoxin MVIIC (500 nM), omega-conotoxin GVIA (500 nM) and agatoxin TK (200 nM). Our results indicate that nicotinic receptors present on striatal nerve terminals induce Ca(2+) entry largely without involving voltage-gated Ca(2+) channels, most likely by direct permeation via the receptor channel itself. In addition, at least two subpopulations of presynaptic nicotinic receptors reside on separate terminals in the striatum, suggesting distinct modulatory roles.  相似文献   

8.
NG-monomethyl-L-arginine (L-NMMA), an inhibitor of nitric oxide synthesis, markedly enhanced tonic ("hump") responses to transmural stimulation in guinea pig ileum longitudinal muscle. The enhancement of the hump responses was probably due to a prejunctional effect on substance P-like neurotransmission, since the action of L-NMMA was exerted also in the presence of atropine, and since responses to substance P, a mimic of nerve stimulation, were unaffected by L-NMMA as were cholinergic twitch responses and the overflow of [3H]choline. Further in support, the hump responses were blocked by the substance P antagonist Spantide. All effects of L-NMMA were stereospecifically reversed by L-arginine. Endogenous nitric oxide thus selectively modulates peptidergic neurotransmission in the gut.  相似文献   

9.
A Botella  M Delvaux  J Frexinos  L Bueno 《Life sciences》1992,50(17):1253-1261
Effect of galanin and CCK8 were studied on isolated smooth muscle cells obtained from pig, guinea-pig, rat, rabbit and dog ileum circular muscle layer. Galanin as well as CCK8 induced a concentration-dependent contraction of pig, rat, rabbit and guinea-pig ileum smooth muscle cells. Maximal contraction ranged between 23.7 +/- 1.9% and 26.1 +/- 3.1% decrease in cell length from control in the presence of both peptides. This maximal contraction was obtained at 1 nM galanin in pig, rat, rabbit, 1 nM CCK8 in rat, rabbit, guinea-pig, at 10 nM galanin in guinea-pig and 10 nM CCK8 in pig. Concentrations of galanin inducing a half maximal contraction (EC50) ranged between 8 pM and 80 pM in these species. In dog, CCK8 induced a concentration-dependent contraction of ileum smooth muscle cells, with a maximal contraction (24.5 +/- 2.3%) at 1nM and an EC50 of 50 pM while galanin inhibited cell contraction induced by CCK8. The CCK-induced contraction was abolished at 10 nM galanin and 10 nM VIP. Concentrations of galanin and VIP inducing a half-maximal relaxation of contracted cells were 2 pM and 3 pM respectively. It is concluded that galanin may induce cell contraction of pig, guinea-pig, rat and rabbit ileum circular muscle layer and cell relaxation of dog ileum by a direct myogenic effect.  相似文献   

10.
Rat brain hypothalami were exposed to various depolarizing stimuli and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) release was measured by means of a radioimmunoassay (RIA) procedure. Under conditions of noradrenergic blockade, exposure to high K(+) (40-100 mM) produced dose-dependent increases in the VIP-LI release in a Ca(2+)-dependent manner. Exposure to veratridine (3-100 microM) also induced concentration-dependent increases in VIP-LI release, an effect that was Ca(2+)-dependent and tetrodotoxin (TTX)-sensitive. Specific ligands for the L, N, and P/Q-type voltage-operated Ca(2+) channels (VOCCs) were used to determine which channel subtypes were involved in the K(+)-evoked VIP-LI release. The L-type VOCC ligand, nifedipine (10 microM), had no effect on release. In contrast, the N-type VOCC blocker, omega-conotoxin GVIA (omega-CgTx GVIA) (0.1-100 nM), markedly reduced the K(+)-evoked response, with maximal inhibition of approximately 60+/-8%. omega-Agatoxin IVA (omega-Aga IVA) (1-50 nM), which binds P-type and, at high doses, also Q-type VOCCs, produced dose-dependent inhibition of up to 25+/-3%, while the maximal inhibition observed with the non-selective VOCCs ligand, omega-conotoxin MVIIC (omega-CmTx MVIIC) (1 nM-3 microM), amounted to 85+/-8%. These findings indicate that N and P-type Ca(2+) channels play predominant roles in the high K(+)-evoked release of VIP-LI from the rat hypothalamus.  相似文献   

11.
Tachykinin receptors mediating substance P-induced secretion were examined in muscle-stripped segments of guinea-pig ileum set up in flux chambers. Changes in the short-circuit current (Isc) served as an index of active, electrogenic ion transport. Substance P evoked a transient increase in Isc which was concentration-dependent. The maximal change in Isc occurred at 1 microM concentration. [Sar9,Met(O2)11]-substance P, a neurokinin 1 (NK-1) receptor agonist, evoked a similar concentration-dependent increase in Isc. [Nle10]NKA(4-10) (1 microM) or [Pro7]NKB (1 microM), selective NK2 and NK3 agonists, respectively, had minimal effects on Isc. CP-96,345 (5 microM), a nonpeptide NK-1 antagonist, and the peptide NK-1 antagonist, GR82334 (1 microM), reduced the secretory response to substance P (50 nM) in the presence and absence of tetrodotoxin (0.2 microM). The NK2 antagonist, [Tyr5,D-Trp6,8,9,Arg10]NKA(4-10) MEN 10207 had no effect on the substance P response. Tetrodotoxin (0.2 microM) significantly reduced, but did not abolish the Isc response to substance P (1 microM) and [Sar9,Met(O2)11]substance P (1 microM). The substance P response was unaltered by 5 microM atropine and 50 microM mecamylamine. Piroxicam (10 microM) or pyrilamine (10 microM) or a combination of both had no effect on the tetrodotoxin-resistant substance P response. Electrical field stimulation evoked a biphasic increase in Isc which was significantly reduced by 0.2 microM tetrodotoxin. Atropine (5 microM) reduced the first peak of the biphasic response and mecamylamine (50 microM) had no effect. Similarly, 5 microM CP-96,345 and 1 microM GR82334 did not alter the EFS-induced change Isc. The results suggest that substance P-evoked secretory responses are independent of histamine or prostaglandins. Substance P responses are mediated by an NK-1 receptor type on enteric neurons and possibly epithelial cells.  相似文献   

12.
1. The effect of substance P on the mechanical activity of carp intestinal bulb smooth muscle was investigated in vitro. 2. Bath-applied substance P (1 nM-1 microM) caused concentration-dependent contraction of the smooth muscle. The EC50 value was 20 +/- 3 nM (N = 13). 3. Pretreatment with tetrodotoxin (780 nM) or atropine (500 nM) partially decreased the contractile response to substance P, while methysergide (3 microM) did not decrease the response. 4. The contractile response to substance P was not decreased by [D-Pro2, D-Trp7.9]-substance P or [D-Pro4, D-Trp7.9]-substance P (4-11) pretreatment (10 microM for 5 min). 5. Exposure of the intestinal bulb to substance P (100 nM and 1 microM for 15 min) decreased the response to subsequent application of substance P, physalaemin and eledoisin in a concentration dependent manner, while the contractile response to acetylcholine or methionine-enkephalin was not affected. 6. Exposure of the intestinal bulb to physalaemin and eledoisin (100 nM for 15 min) decreased the response to subsequent application of substance P. 7. The above results indicate that substance P causes the contraction of the carp intestinal bulb smooth muscle through its direct action on the smooth muscle and its indirect action through enteric cholinergic nerves. Long-term exposure to substance P causes desensitization of the preparation to substance P, physalaemin and eledoisin at the receptor level.  相似文献   

13.
With its abundance of neurons and immunocytes, the gut is a potentially important site for the study of the interaction between the nervous and immune systems. Using immunohistochemical techniques, we tested the hypothesis that gut-associated lymphoid tissue in the porcine small intestine might receive catecholaminergic, cholinergic and peptidergic innervation. Antibodies against protein gene product (PGP) 9.5 were employed to detect neuronal membranes; antibodies against tyrosine hydroxylase (TH), type 2 vesicular monoamine transporter (VMAT-2) and choline acetyltransferase (ChAT) were used to detect catecholaminergic and cholinergic neurons; and antibodies to neuromedin U-8 (NMU-8), substance P (SP) and vasoactive intestinal peptide (VIP) were also used. PGP9.5-immunoreactive nerve fibers were observed between jejunal Peyer's patch (PP) follicles and in submucosal ganglia localized at the base of continuous ileal PP. Many ChAT-positive and a few TH-/VMAT-2-immunoreactive neurons or axons adjacent to jejunal and ileal PP were observed. Neurons and fibers from ganglia situated between or at the base of PP follicles manifested robust immunoreactivities to VIP and NMU-8; relatively less SP immunoreactivity was observed at these locations. All neuromedin-U 8-positive neurons observed exhibited immunoreactivity to ChAT as did some VIP-positive neurons. The specific chemical coding of enteric neurons in close apposition to jejunal and ileal PP and the differential localization of neuropeptides within the jejunal and ileal PP are indicative of neuroimmunomodulation at these sites.  相似文献   

14.
Summary The guinea-pig taenia coli is rich in peptide-containing nerves. Nerve fibres containing substance P (SP), vasoactive intestinal peptide (VIP), or enkephalin, were numerous in the smooth muscle while somatostatin fibres were very few. Nerve fibres displaying SP or VIP immunoreactivity were numerous in the myenteric plexus. Enkephalin nerve fibres were fairly numerous in the plexus while somatostatin nerve fibres were sparse. Nerve cell bodies containing immunoreactive SP or VIP were regularly seen in the plexus. Delicate varicose elements of the different types of nerve fibres were found to ramify around nerve cell bodies in a manner suggestive of innervation.In the electron microscope the various peptide-storing nerve fibres (i.e., elements containing SP, VIP or enkephalin) were found to contain a varying number of fairly large, electron-opaque vesicles in the varicose swellings. These vesicles represent the storage site of the neuropeptides.The isolated taenia coli responded to electrical nerve stimulation with a contraction. After cholinergic and adrenergic blockade the contractile response was replaced by a relaxation followed by a contraction upon cessation of stimulation. SP contracted the taenia while VIP caused a relaxation. The enkephalins raised the resting tension slightly while somatostatin had no effect. These observations are compatible with a role for SP as an excitatory neurotransmitter and for VIP as an inhibitory one, and with the view that both SP neurones and VIP neurones act as motor neurones. In preparations contracted by SP the electrically induced contractions were reduced in amplitude while the electrically induced relaxations seen after adrenergic and cholinergic blockade were enhanced in amplitude. In preparations relaxed by VIP there was an increased contractile response to electrical stimulation, while in the atropine + guanethidine-treated preparation the electrically induce relaxations were reduced in amplitude. The enkephalins reduced the contractile response to electrical stimulation, while somatostatin induced a very small reduction in the amplitude of such responses. These observations suggest that SP neurones and VIP neurones may play additional roles as interneurones. Somatostatin neurones probably act as interneurones. Enkephalin-containing fibres may serve to modify the release of transmitter from other nerves in the smooth muscle, perhaps through axo-axonal arrangements. Alternatively, the enkephalin nerve fibres in the smooth muscle are afferent elements involved in mediating sensory impulses to the myenteric plexus.  相似文献   

15.
The inhibitory effect of an adenosine analogue, R-N6-phenylisopropyl adenosine (R-PIA), of the cholinergic agonist carbachol, and of morphine on 3H efflux from [3H]choline-labeled field-stimulated rat hippocampal slices was compared with that produced by two inhibitors of N- and L-type Ca2+ channels, omega-conotoxin (CgTx; conotoxin GVIA) and cadmium chloride. 4-Aminopyridine (4-AP) caused a dose-dependent increase in evoked transmitter release, with a maximal effect (an almost threefold increase) at 100 microM. 4-AP (100 microM) did not affect the actions of CgTx, cadmium chloride, and R-PIA but almost abolished the effect of carbachol and morphine. The present results indicate that presynaptic muscarinic and opiate receptors reduce acetylcholine release by a mechanism that is somewhat different from that used by adenosine A1 receptors. Furthermore, the results indicate that presynaptic A1 receptors on hippocampal cholinergic neurons do not primarily regulate 4-AP-dependent potassium channels, but that they might act directly on a Ca2+ conductance.  相似文献   

16.
Prostaglandin E2 (PGE2) applied cumulatively (1 nM-1 microM) induced concentration-dependent tonic contractions in the longitudinal muscle of isolated rat rectum. The PGE2 effects were not altered by guanethidine (50 microM), whereas atropine (3 microM), guanethidine plus atropine or tetrodotoxin (0.1 microM) reduced them to an almost equal extent and increased the EC50 values for PGE2. The after-contractions following electrical stimulation were enhanced by PGE2 (10 nM) and inhibited by atropine. Diphloretin phosphate (DPP, 100 microM) shifted the regression lines for PGE2 to the right in both untreated and tetrodotoxin-treated preparations, and thereby increased the EC50 values. Slopes of the concentration-effect lines for PGE2 before and after DPP differed in the presence of tetrodotoxin. The regression line for PGE2 with SC 19220 (100 microM) in tetrodotoxin-treated preparations was shifted to the right in a parallel fashion. It is concluded that PGE2 exerted both a neural (cholinergic) and a smooth muscle effect. There may be a competitive antagonism between SC 19220 and PGE2 but the block by DPP may be nonselective.  相似文献   

17.
M Ishizawa 《Prostaglandins》1991,42(6):579-586
The mechanical effects of 16-methyl analogues of PGE2, mainly 16,16-dimethyl PGE2, on circular and longitudinal muscles of the guinea-pig isolated proximal colon were investigated. In circular muscle strips, PGE2 100 nM produced an initial contraction followed by relaxation, while 16(R)-methyl PGE2 and 16,16-dimethyl PGE2 (1 nM - 1 microM) produced sustained contractions. In longitudinal muscle strips, PGE2 and 16-methyl analogues of PGE2 produced only contractions. The contractile responses of both muscle strips to 16,16-dimethyl PGE2 were not influenced by atropine or tetrodotoxin, indicating that these analogues act directly on the muscles, but were eliminated by the omission of extracellular Ca ions or in the presence of 1 mM lanthanum ions. However, verapamil, a Ca channel blocker, did not block the contractile response to the methyl analogues in circular muscle strips, although it completely inhibited the contractile response of longitudinal muscle strips. These results suggest that the contractile effect of 16-methyl analogues of PGE2 on the circular muscle may be due to an increased influx of Ca ions mainly via receptor-sensitive and partly voltage-sensitive Ca channels, while the contractile effect of the analogues on the longitudinal muscle may be due to an increase in influx of Ca ions via voltage-sensitive Ca channels.  相似文献   

18.
By immunohistochemistry galanin-like immunoreactivity and vasoactive intestinal polypeptide (VIP)-like immunoreactivity were found in nerve cell bodies mostly in the submucous plexus and in nerve fibres in the mucosa, submucosa and muscularis including the myenteric plexus of the porcine ileum and were found to co-exist in most of these structures. Using isolated, perfused porcine ileum we studied the release of galanin and VIP in response to electrical stimulation of the mixed periarterial nerves or to intraarterial infusions of different neuroactive agents. Nerve stimulation (4-10 Hz) inhibited the basal release of galanin and VIP from the ileum (to 69 +/- 6 and 62 +/- 6% of basal release). After infusion of the alpha-adrenergic blocker, phentolamine, (10(-6) M) electrical stimulation increased the release of both galanin and VIP (to 140 +/- 12 and 133 +/- 13% of basal output). This increase was abolished by atropine (10(-6) M) and by hexamethonium (3.10(-5) M). Infusion of norepinephrine (10(-6) M) inhibited, whereas acetylcholine (10(-6) M) stimulated the release of both peptides. The effect of the latter was abolished by atropine. The inhibitory effect of nerve stimulation was not influenced by atropine. Our results suggest that the galanin- and VIP-producing intrinsic neurons receive inhibitory signals by noradrenergic nerve fibers and stimulatory signals mediated by cholinergic nerves, possibly via a cholinergic interneuron.  相似文献   

19.
1. The mechanical responses to some autonomic drugs and neuropeptides of longitudinal muscle (LM) and circular muscle (CM) strips isolated from the carp intestinal bulb were investigated in vitro. 2. Acetylcholine and carbamylcholine caused concentration-dependent transient contraction of both LM and CM strips. Tetrodotoxin had no effect, but atropine selectively decreased the contractile responses to acetylcholine and carbamylcholine. 3. Excitatory alpha-2 and inhibitory beta adrenoceptors were present in both LM and CM strips. 4. 5-Hydroxytryptamine (5-HT) caused concentration-dependent contraction of both LM and CM strips. Tetrodotoxin, atropine and methysergide decreased the contractile responses to 5-HT. 5. Some neuropeptides (angiotensin I, angiotensin II, bombesin, bradykinin, neurotensin, somatostatin and vasoactive intestinal polypeptide) did not cause any mechanical response (contraction or relaxation) in either smooth muscle strip. 6. Substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) caused contraction of both LM and CM strips. However, the time course of the contraction in LM was different from that in CM. The order of potency was NKA greater than SP greater than NKB in LM strips and NKA greater than SP much greater than NKB in CM strips. In LM strips, the contractile responses to tachykinins were unaffected by spantide and methysergide, but partly decreased by tetrodotoxin and atropine. On the other hand, the contractile responses of CM strips were unaffected by tetrodotoxin, atropine, methysergide and spantide. 7. Dynorphin (1-13) (DYN), leucine-enkephalin (L-Enk) and methionine-enkephalin (M-Enk) caused concentration-dependent contraction of both LM and CM strips. The order of potency was DYN greater than M-Enk greater than L-Enk. Naloxone selectively decreased the responses to opiate peptides. 8. The present results indicate that acetylcholine, carbamylcholine, catecholamines, 5-HT, tachykinins (SP, NKA and NKB) and opiate peptides (DYN, L-Enk and M-Enk) affect the mechanical activity of LM and CM strips isolated from the carp intestinal bulb through their specific receptors.  相似文献   

20.
We examined the direct effect of motilin on longitudinal and circular smooth muscle cells isolated from the guinea pig small intestine. In addition, the effects of 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8, an inhibitor of intracellular Ca(2+)-release), verapamil (a voltage-dependent Ca(2+)-channel blocker), and removal of extracellular Ca2+ were investigated to evaluate the role of intracellular Ca2+ stores and extracellular Ca2+ on the muscle contraction induced by motilin. The effects of atropine (a muscarinic receptor antagonist), spantide (a substance P receptor antagonist) and loxiglumide (a CCK-receptor antagonist) were also examined to determine whether the motilin-induced contraction was independent of those receptors. Motilin induced a contraction of the longitudinal and circular smooth muscle cells in a dose-dependent manner with the maximal effect attained after 30 seconds of incubation. The ED50 values were 0.3 nM and 0.05 nM, respectively. TMB-8 suppressed completely the motilin-induced contraction of both types of smooth muscle cells. Verapamil had only a slight suppressive effect. Removal of extracellular Ca2+ did not have any significant influence on motilin-induced contraction. The contractile response to motilin was not affected by atropine, spantide or loxiglumide. Our findings showed that:1) motilin has a direct contractile effect on both longitudinal and circular smooth muscle cells; 2) this contractile effect is not evoked via muscarinic, substance P or CCK receptors, and 3) the intracellular release of Ca2+ plays an important role in the contractile response to motilin on both types of smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号