首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional flow cytometry using scattering and fluorescent detection methods has been a fundamental tool of biological discoveries for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents the long-term study of cells in their native environment. Here, we summarize recent advances of new generation flow cytometry for in vivo noninvasive label-free or targeted detection of cells in blood, lymph, bone, cerebral and plant vasculatures using photoacoustic (PA) detection techniques, multispectral high-pulse-repetition-rate lasers, tunable ultrasharp (up to 0.8nm) rainbow plasmonic nanoprobes, positive and negative PA contrasts, in vivo magnetic enrichment, time-of-flight cell velocity measurement, PA spectral analysis, and integration of PA, photothermal (PT), fluorescent, and Raman methods. Unique applications of this tool are reviewed with a focus on ultrasensitive detection of normal blood cells at different functional states (e.g., apoptotic and necrotic) and rare abnormal cells including circulating tumor cells (CTCs), cancer stem cells, pathogens, clots, sickle cells as well as pharmokinetics of nanoparticles, dyes, microbubbles and drug nanocarriers. Using this tool we discovered that palpation, biopsy, or surgery can enhance CTC release from primary tumors, increasing the risk of metastasis. The novel fluctuation flow cytometry provided the opportunity for the dynamic study of blood rheology including red blood cell aggregation and clot formation in different medical conditions (e.g., blood disorders, cancer, or surgery). Theranostics, as a combination of PA diagnosis and PT nanobubble-amplified multiplex therapy, was used for eradication of CTCs, purging of infected blood, and thrombolysis of clots using PA guidance to control therapy efficiency. In vivo flow cytometry using a portable fiber-based devices can provide a breakthrough platform for early diagnosis of cancer, infection and cardiovascular disorders with a potential to inhibit, if not prevent, metastasis, sepsis, and strokes or heart attack by well-timed personalized therapy.  相似文献   

2.
Conventional photothermal (PT) and photoacousic (PA) imaging, spectroscopy, and cytometry are preferentially based on positive PT/PA effects, when signals are above background. Here, we introduce PT/PA technique based on detection of negative signals below background. Among various new applications, we propose label-free in vivo flow cytometry of circulating clots. No method has been developed for the early detection of clots of different compositions as a source of thromboembolism including ischemia at strokes and myocardial infarction. When a low-absorbing, platelet-rich clot passes a laser-irradiated vessel volume, a transient decrease in local absorption results in an ultrasharp negative PA hole in blood background. Using this phenomenon alone or in combination with positive contrasts, we demonstrated identification of white, red, and mixed clots on a mouse model of myocardial infarction and human blood. The concentration and size of clots were measured with threshold down to few clots in the entire circulation with size as low as 20 μm. This multiparameter diagnostic platform using portable personal high-speed flow cytometer with negative dynamic contrast mode has potential to real-time defining risk factors for cardiovascular diseases, and for prognosis and prevention of stroke or use clot count as a marker of therapy efficacy. Possibility for label-free detection of platelets, leukocytes, tumor cells or targeting themby negative PA probes (e.g., nonabsorbing beads or bubbles) is also highlighted.  相似文献   

3.
BACKGROUND: Analysis of the DNA cell cycle and glutathione content cannot be performed on viable cells, because the fluorescence emissions of the DNA-specific probe Hoechst 33342 and the glutathione-specific probe monobromobimane overlap completely. We decided to explore whether the emissions could be resolved by the singlet excited state lifetimes of the probes. METHODS: Viable cells were first incubated with Hoechst 33342 at 37 degrees C for 30 min and then with monobromobimane at room temperature for 10 min. Samples were excited with a sinusoidally modulated laser beam (10 MHz) in a flow cytometer. The Hoechst 33342 and monobromobimane lifetimes and fluorescence intensities were resolved by using phase-sensitive detectors. RESULTS: The observed singlet excited state lifetimes were 1.5 ns for Hoechst 33342 and 12 ns for monobromobimane. The glutathione (GSH) content was shown to increase as cells (GM130, HL60, U937) progressed through the cell cycle. However, after the data were corrected for differences in cell volume, it was found that the GSH concentration was constant throughout the cell cycle of the exponentially growing cells. CONCLUSIONS: Phase-resolved flow cytometry provides a means for the specific analysis of the GSH content/concentration as a function of the cell's position in the DNA cell cycle in viable cells.  相似文献   

4.
Flow cytometry is a well-established, powerful technique for studying cells in artificial flow in vitro. This review covers a new potential application of this technique for studying normal and abnormal cells in their native condition in blood or lymph flow in vivo. Specifically, the capabilities of the label-free photothermal (PT) technique for detecting and imaging cells in the microvessel network of rat mesentery are analyzed from the point of view of overcoming the problems of flow cytometry in vivo. These problems include, among others, the influences of light scattering and absorption in vessel walls and surrounding tissues, instability of cell velocity, and cells numbers and positions in a vessel's cross-section. The potential applications of this new approach in cell biochemistry and medicine are discussed, including molecular imaging; studying the metabolism and pathogenesis of many diseases at a cellular level; and monitoring and quantifying metastatic and apoptotic cells, and/or their responses to therapeutic interventions (e.g., drug or radiation), in natural biological environments.  相似文献   

5.
6.
The specific detection and enumeration of Lactobacillus brevis LB62, Carnobacterium divergens V14 and Carnobacterium piscicola VI were studied by in situ hybridizationflow cytometry. The method was performed on the exponential growth phase with three probes targeting 16S rRNA labelled with fluorescein isothicyanate (FITC) : EUB338 probe universal for Eubacteria, Lb probe specific for Lact. brevis and Cb probe specific for the genus Carnobacterium . EUB338 was used to determine the permeabilization and hybridization conditions for the cells. The Lb probe gave no hybridization signal whereas the Cb probe allowed the detection and quantification by flow cytometry at 520 nm of the two Carnobacterium strains in pure culture or in mixtures with Listeria innocua F.  相似文献   

7.
Alterations of blood rheology (hemorheology) are important for the early diagnosis, prognosis, and prevention of many diseases, including myocardial infarction, stroke, sickle cell anemia, thromboembolism, trauma, inflammation, and malignancy. However, real-time in vivo assessment of multiple hemorheological parameters over long periods of time has not been reported. Here, we review the capabilities of label-free photoacoustic (PA) and photothermal (PT) flow cytometry for dynamic monitoring of hemorhelogical parameters in vivo which we refer to as photoacoustic and photothermal blood rheology. Using phenomenological models, we analyze correlations between both PT and PA signal characteristics in the dynamic modes and following determinants of blood rheology: red blood cell (RBC) aggregation, deformability, shape (e.g., as in sickle cells), intracellular hemoglobin distribution, individual cell velocity, hematocrit, and likely shear rate. We present ex vivo and in vivo experimental verifications involving high-speed PT imaging of RBCs, identification of sickle cells in a mouse model of human sickle cell disease and in vivo monitoring of complex hemorheological changes (e.g., RBC deformability, hematocrit and RBC aggregation). The multi-parameter platform that integrates PT, PA, and conventional optical techniques has potential for translation to clinical applications using safe, portable, laser-based medical devices for point-of-care screening of disease progression and therapy efficiency.  相似文献   

8.
Here, we reported the development of a label-free and real-time surface plasmon resonance (SPR) based biosensor for cancer stem cells (CSCs) detection using cell surface biomarker; CD133. The fabricated biosensor was used for detection of this marker in some acute myeloid leukemia (AML) patients and the results were compared with those obtained from flow cytometry (FC) method. CD133 antibody was immobilized on the gold chip surface via EDC/NHS coupling method and binding of the candidate cells to the modified gold sensor surface was monitored after isolation of mononuclear cells from bone marrow of the patients. The method was validated in terms of various parameters such as CD133- antibody concentration and cell density. The CD133-marked cells were investigated in seven AML patients. All SPR results were compared with those obtained from FC method. A very good correlation (R2 = 0.96) was obtained between SPR and FC responses related to CD133-marked cells densities. In conclusion, in this study, a label-free and real-time SPR cytometry method was developed to detect CD133 and it was successfully applied to follow this cancer stem cell biomarker in AML patients.  相似文献   

9.
We demonstrated quantitative real-time label-free detection of DNA sequences using the liquid core optical ring resonator (LCORR) sensor. The LCORR is a recently developed sensing platform that integrates microfluidics and photonic sensing technology with low detection limit and sub-nanoliter detection volume. We analyzed experimentally and theoretically the LCORR response to a variety of DNA samples that had different strand lengths (25-100 bases), number of base- mismatches (1-5), and concentrations (10 pM to 10 microM) to evaluate the LCORR sequence detection capability. In particular, we established the linear correlation between the LCORR sensing signal and the molecule density, which allows us to accurately calculate the molecule density on the surface. It is found that the probe surface coverage was 26-51% and the extent of hybridization was 40-50%. The titration curve for 25-base probe and 25-base target DNA yields a dissociation constant of 2.9 nM. With a 37.1 nm/RIU LCORR, detection of 10 pM bulk DNA concentration was demonstrated. The mass detection limit was estimated to be 4 pg/mm(2), corresponding to a density of 10(10) molecules/cm(2) on the surface. We also showed that the LCORR was sensitive enough to differentiate DNA with only a few base-mismatches based on the raw sensing signal and kinetic analysis. Our work will provide important insight into the light-DNA interaction at the ring resonator surface and lay a foundation for future LCORR-based DNA label-free microarray development.  相似文献   

10.
Due to its spectral characteristics, the fluorochrome nonyl acridine orange (NAO) (lambda abs:489 nm, lambda em:525 nm), which is spontaneously incorporated by mitochondria with a high relative specificity, provides a new probe for the in situ study of these organelles by flow cytometry. In 15 min at 20 degrees C, the dye at 4.75 X 10(-6) M saturates the mitochondrial binding sites present in 1.5 X 10(6) cells. Unlike Rh 123, the fixation of the probe is not affected by the action of uncouplers and ionophores. Unlike acridine orange, its binding is not sensitive to nucleases. By studying the mitochondrial incorporation of the fluorochrome during the cell cycle of murine splenocytes, it was possible to show that the biogenesis of NAO-stained mitochondrial constituents mainly occurs during the G1 phase.  相似文献   

11.
We describe a procedure for simplified, simultaneous one-step staining in 10 min for DNA and cell and tissue proteins using a newly developed staining solution containing 0.03% hematoporphyrin (HP) with 0.001% DAPI [or with Hoeschst 33342 (HO)]. These HP/DAPI or HP/HO solutions were especially developed to facilitate a trial of automated cancer cell screening on sputum samples using flow cytometry. Under UV light (365 nm) with fluorescence microscopy, HP/DAPI-stained cells showed red fluorescence (max. 670 nm) of cytoplasm and simultaneous blue fluorescence (max. 470 nm) of nuclei. The distance between the maximum peak of fluorescence spectra of DNA and that of protein was as large as 200 nm, and there was no detectable overlapping of each spectrum at the photometric filter range, which provided accurate measurement of DNA and protein. On flow cytometry, a single UV beam (370 nm) from the argon laser was used for excitation of both dyes. Measurement of DNA was done using a 470-nm bandpass filter and of protein using a 640-nm longpass (or 670-nm bandpass) filter. Reflecting the undetectable overlapping of the fluorescence spectra of protein and DNA, normal diploid cells in sputum revealed horizontal distributions along the 2C level on the dot-plot display of flow cytometry, which made sorting of abnormal hyperdiploid cells and cancer cells easier.  相似文献   

12.
A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml.  相似文献   

13.
BACKGROUND: Development of spectrally distinct green fluorescent protein (GFP) variants has allowed for simultaneous flow cytometric detection of two different colored mutants expressed in a single cell. However, the dual-laser methods employed in such experiments are not widely applicable since they require a specific, expensive laser, and single-laser analysis at 488 nm exhibits considerable spectral overlap. The purpose of this work was to evaluate detection of enhanced cyan fluorescent protein (ECFP) in combination with the enhanced green (EGFP) and enhanced yellow (EYFP) fluorescent proteins by flow cytometry. METHODS: Cells transfected with expression constructs for EGFP, EYFP, or ECFP were analyzed by flow cytometry using excitation wavelengths at 458, 488, or 514 nm. Fluorescence signals were separated with a custom optical filter configuration: 525 nm shortpass and 500 nm longpass dichroics; 480/30 (ECFP), 510/20 (EGFP) and 550/30 (EYFP) bandpasses; 458 nm laser blocking filters. RESULTS: All three fluorescent proteins when expressed individually or in combination in living cells were excited by the 458 nm laser line and their corresponding signals could be electronically compensated in real time. CONCLUSIONS: This method demonstrates the detection of three fluorescent proteins expressed simultaneously in living cells using single laser excitation and is applicable for use on flow cytometers equipped with a tunable argon ion laser.  相似文献   

14.
In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coli O157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 10(4) cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 10(2) and 10(3) cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coli O157:H7 in broth cultures.  相似文献   

15.
Recently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time. We observed strong dynamic PA signal fluctuations, which can be associated with interactions of dyes with circulating blood cells and plasma proteins. PAFC demonstrated enumeration of circulating red and white blood cells labeled with ICG and MB, respectively, and detection of rare dead cells uptaking TB directly in bloodstream. The possibility for accurate measurements of various dye concentrations including Crystal Violet and Brilliant Green were verified in vitro using complementary to PAFC photothermal (PT) technique and spectrophotometry under batch and flow conditions. We further analyze the potential of integrated PAFC/PT spectroscopy with multiple dyes for rapid and accurate measurements of circulating blood volume without a priori information on hemoglobin content, which is impossible with existing optical techniques. This is important in many medical conditions including surgery and trauma with extensive blood loss, rapid fluid administration, and transfusion of red blood cells. The potential for developing a robust clinical PAFC prototype that is safe for human, and its applications for studying the liver function are further highlighted.  相似文献   

16.
The synthesis of a new benzoxazinone derivative suitable to detect early infection of cultured cells with mycoplasmas is described. p-[beta-(7-dimethylamino 1,4-benzoxazin 2-one 3yl)-vinyl]- phenylpropenoic acid was coupled to kanamycin A, an aminoglycoside leading to a cationic fluorescent probe which fluoresces at 600 nm upon excitation at 490 nm. This fluorescent probe is shown to heavily label the glycocallix of all the mycoplasma strains tested which are found to be associated with contaminated cultured cells and to allow an easy and rapid detection of contamination by fluorescence microscopy and flow cytometry.  相似文献   

17.
BACKGROUND: Cell permeabilization for the detection of intracellular molecules by flow cytometry is usually incompatible with whole blood. This article describes a new technique for the simultaneous detection of surface antigens and DNA content in rat whole blood. METHODS: In 20 microl of rat whole blood, DNA staining is obtained by permeabilization of cells using a standard red blood cell lysing reagent (Erythrolyse). Immunophenotyping and apoptosis detection by flow cytometry are achieved by using a combination of three surface markers (CD3, CD4, and CD8alpha) and a DNA binding dye (TO-PRO-3). RESULTS: After a 24-h incubation of whole blood with 1 microM dexamethasone, apoptotic lymphocytes were clearly distinguishable from normal lymphocytes by their reduced size and DNA content. The dexamethasone-induced percentage of apoptotic cells was 58.9 +/- 4.6 for CD4+ and 77.4 +/- 2.9 for CD8+ T cells, compared with 12.6 +/- 2.7 for CD4+ and 17.2 +/- 3.5 for CD8+ T cells in the absence of dexamethasone (data from 10 animals with duplicate samples). CONCLUSIONS: We have developed a new technique to permeabilize nucleated cells in microsamples of rat whole blood. The methodology allows simultaneous immunophenotyping and apoptosis detection in rat whole blood.  相似文献   

18.
Several fluorescent probes were evaluated as indicators of bacterial viability by flow cytometry. The probes monitor a number of biological factors that are altered during loss of viability. The factors include alterations in membrane permeability, monitored by using fluorogenic substrates and fluorescent intercalating dyes such as propidium iodide, and changes in membrane potential, monitored by using fluorescent cationic and anionic potential-sensitive probes. Of the fluorescent reagents examined, the fluorescent anionic membrane potential probe bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC(inf4)(3)] proved the best candidate for use as a general robust viability marker and is a promising choice for use in high-throughput assays. With this probe, live and dead cells within a population can be identified and counted 10 min after sampling. There was a close correlation between viable counts determined by flow cytometry and by standard CFU assays for samples of untreated cells. The results indicate that flow cytometry is a sensitive analytical technique that can rapidly monitor physiological changes of individual microorganisms as a result of external perturbations. The membrane potential probe DiBAC(inf4)(3) provided a robust flow cytometric indicator for bacterial cell viability.  相似文献   

19.
Confocal fluorescence microscopy is a powerful biological tool providing high-resolution, three-dimensional (3D) imaging of fluorescent molecules. Many cellular components are weakly fluorescent, however, and thus their imaging requires additional labeling. As an alternative, label-free imaging can be performed by photothermal (PT) microscopy (PTM), based on nonradiative relaxation of absorbed energy into heat. Previously, little progress has been made in PT spectral identification of cellular chromophores at the 3D microscopic scale. Here, we introduce PTM integrating confocal thermal-lens scanning schematic, time-resolved detection, PT spectral identification, and nonlinear nanobubble-induced signal amplification with a tunable pulsed nanosecond laser. The capabilities of this confocal PTM were demonstrated for high-resolution 3D imaging and spectral identification of up to four chromophores and fluorophores in live cells and Caenorhabditis elegans. Examples include cytochrome c, green fluorescent protein, Mito-Tracker Red, Alexa-488, and natural drug-enhanced or genetically engineered melanin as a PT contrast agent. PTM was able to guide spectral burning of strong absorption background, which masked weakly absorbing chromophores (e.g., cytochromes in the melanin background). PTM provided label-free monitoring of stress-related changes to cytochrome c distribution, in C. elegans at the single-cell level. In nonlinear mode ultrasharp PT spectra from cyt c and the lateral resolution of 120 nm during calibration with 10-nm gold film were observed, suggesting a potential of PTM to break through the spectral and diffraction limits, respectively. Confocal PT spectromicroscopy could provide a valuable alternative or supplement to fluorescence microscopy for imaging of nonfluorescent chromophores and certain fluorophores.  相似文献   

20.
Fluorescent in situ hybridization allows for rapid and precise detection of specific nucleic acid sequences in interphase and metaphase cells. We applied fluorescent in situ hybridization to human lymphocyte interphase nuclei in suspension to determine differences in amounts of chromosome specific target sequences amongst individuals by dual beam flow cytometry. Biotinylated chromosome 1 and Y specific repetitive satellite DNA probes were used to measure chromosome 1 and Y polymorphism amongst eight healthy volunteers. The Y probe fluorescence was found to vary considerably in male volunteers (mean fluorescence 169, S.D. 35.6). It was also detectable in female volunteers (mean fluorescence 81, S.D. 10.7), because 5-10% of this repetitive sequence is located on autosomes. The Y probe fluorescence in males was correlated with the position of the Y chromosome cluster in bivariate flow karyotypes. When chromosome 1 polymorphism was studied, one person out of the group of eight appeared to be highly polymorphic, with a probe fluorescence 26% below the average. By means of fluorescent in situ hybridization on a glass slide and bivariate flow karyotyping, this 26% difference was found to be caused by a reduction of the centromere associated satellite DNA on one of the homologues of chromosome 1. The simultaneous hybridization to human lymphocyte interphase nuclei of biotinylated chromosome 1 specific repetitive DNA plus AAF-modified chromosome Y specific DNA was detected by triple beam flow cytometry. The bicolor double hybridized nuclei could be easily distinguished from the controls. When the sensitivity of this bicolor hybridization is improved, this approach could be useful for automatic detection of numerical chromosome aberrations, using one of the two probes as an internal control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号