首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ants and dung beetles are focal indicators of change in several ecological processes and successional vegetation stages in Mediterranean landscapes. Despite relatively good knowledge of local species distributions, there are few data on their distributions at different scales. In the present study, the influence of multiscale landscape structure was examined using both ants and dung beetles to identify species that can serve as indicators and detectors of changes in vegetation structure. Multiscale analysis is necessary to explore the different roles of indicator and detector species for use as tools in studies focused on monitoring ecological changes. The study area was the Cabañeros National Park, in the center of the Iberian Peninsula. This site was selected because it is a good setting to evaluate the effects of typical vegetation mosaics on Mediterranean species at different scales. In this study, dung beetles and ants were trapped for one year. A multiscale analysis was designed using three different vegetation habitats (forest, scrubland and grassland) and landscape matrices (woodland, scrubland and grassland). Among dung beetles, 23 indicator species (IndVal values higher than 70%) were found at different scales of analysis. In addition, 20 dung beetle species were characterized as detector species (IndVal values between 45 and 70%) for the three different levels analyzed. Similar to the dung beetles, the ants had different species assemblages at various habitats and landscape levels; however, no indicator ant species were found in this study. All species with significant IndVal values (n = 8) were identified as detector species. Thus, ant and dung beetle assemblages were influenced in different ways by vegetation structure. Both groups showed strong individual species responses to different Mediterranean landscape conditions and vegetation types. Further, both insect groups showed a great number of detector species, which can be useful in ecosystem management because they have varying degrees of preference and sensitivity for different ecological states (such as successional vegetation stages). The diverse indicator and detector species identified in this work could be useful tools for the detection of landscape structure changes at both levels habitat patches and landscape matrix. However, a generalisation of the results at landscape scale should be taken with precaution, but they encourage to study more regions and similar landscapes. The use of more than one indicator group in the analysis confirms the importance of selecting groups with different sensitivities at varying spatial scales as well as different ecosystem functions. This strategy allows the establishment of a clear baseline with which to analyze future direct and indirect impacts of management in Mediterranean protected areas.  相似文献   

2.
This study explores the past, present and future ecological changes in the highest Mediterranean temporary pond (Omalos pond) in western Crete, Greece. Data from downcore pollen analysis (including pollen and spores from both aquatic vegetation, and terrestrial herbaceous, arboreal and shrub vegetation), modern vegetation monitoring and existing climate scenarios have been combined to provide a picture of the ecological changes in the pond over the last 13,600 years. Downcore pollen analysis throughout the last 13,600 years indicated the presence of species typical of Mediterranean Temporary Pond (MTP) habitats and suggested relatively drier conditions towards the present. The low number of non-native, cultivated species (such as herbaceous Trifolium and Plantago species) observed over this period suggested relatively low impact from crop agriculture, despite the increasing grazing pressure in the area. In the absence of independent proxies, we cannot reliably distinguish between natural and human-induced changes. The presence of aquatic Isoetes in the palaeo-record indicates the existence of an ephemeral pond in the area as early as the beginning of the Holocene suggesting resilience of the ecosystem over time. However, the degraded state of pollen in depths over 55 cm (i.e. 3600 year BP) increases the uncertainty of the interpretation. Currently, the pond holds 76 plant species belonging to 25 families. Therophytes and chamaephytes were the most frequent, suggesting a typical ephemeral habitat life form spectrum. Species richness was found to increase during spring surveys whereas the highest turnover was observed between summer surveys of consecutive years. Cluster analysis demonstrated a distinct zonation in four vegetation belts from the periphery to the centre of the pond which is typical of these environments. Modelling, based on two IPPC scenarios (A2 and B2), predicted relatively low climate change impacts on the pond’s hydroperiod for the next 100 years (i.e. a decrease of 16 and 24 days, respectively). This reduction in the hydroperiod of the pond will have an effect on the physiognomy and spatial extent of vegetation, particularly for the transitional belts between the core and its outer area, while it will exert more pressure on the pond as a water resource for sheep in the region. However, cumulative effects and complex interactions of climate-driven environmental changes and other anthropogenic disturbances might act synergistically to accelerate impacts in the future.  相似文献   

3.
Biological invasions are increasingly creating ecological and economical problems both on land and in aquatic environments. For over a century, the Mediterranean Sea has steadily been invaded by Indian Ocean/Red Sea species (called Lessepsian invaders) via the Suez Canal, with a current estimate of ~450 species. The bluespotted cornetfish, Fistularia commersonii, considered a ‘Lessepsian sprinter’, entered the Mediterranean in 2000 and by 2007 had spread through the entire basin from Israel to Spain. The situation is unique and interesting both because of its unprecedented rapidity and by the fact that it took this species c. 130 years to immigrate into the Mediterranean. Using genome scans, with restriction site‐associated DNA (RAD) sequencing, we evaluated neutral and selected genomic regions for Mediterranean vs. Red Sea cornetfish individuals. We found that few fixed neutral changes were detectable among populations. However, almost half of the genes associated with the 47 outlier loci (potentially under selection) were related to disease resistance and osmoregulation. Due to the short time elapsed from the beginning of the invasion to our sampling, we interpret these changes as signatures of rapid adaptation that may be explained by several mechanisms including preadaptation and strong local selection. Such genomic regions are therefore good candidates to further study their role in invasion success.  相似文献   

4.
We aimed to assess the impact of warmer and drier climate change conditions on the seed rain and seedling establishment of Globularia alypum L. and Erica multiflora L., two dominant species in Western coastal Mediterranean shrublands. We performed a non-intrusive field experiment in which we increased the night-time temperatures and excluded spring and autumn rainfall. We monitored the seed rain over 5 years and the seedling recruitment over 9 years on these experimental plots. Seed rain of E. multiflora was enhanced by warming treatment in relation to control, and higher annual rainfall, while seed rain of G. alypum was increased by drought treatment in relation to control, dry years and higher minimum annual temperature. Annual rainfall enhanced the seedling emergence of both species, which also positively correlated with annual mean temperatures. Drought treatment significantly decreased seedling emergence for both species, which was higher in open areas than below vegetation cover. The seedling survival of both species diminished at closer distances to competing neighbours, and in G. alypum seedling survival was higher with lower annual mean temperatures and higher annual rainfall, but also in drought treatment, which have experienced vegetation cover decline. The study confirms that the increasing aridity in Mediterranean ecosystems would constrain the early stages of development in typical co-occurring shrubs. However, there are contrasting responses to climatic conditions between species recruitment, which might favour changes in vegetation through modification of species relative abundance.  相似文献   

5.
Monitoring changes in the terrestrial carbon cycle and vegetation health can only be undertaken over large areas and on a regular basis using ecological indicators derived from satellite-based sensors. Climate conditions in Mediterranean ecosystems have undergone, and are projected to undergo, significant change in the future with marked impacts on forest and shrubland vegetation. In the southwest of Australia (SWAU), endemic tree species have experienced significant declines in health and mortality since the early 1990s primarily due to these climatic changes. In this paper we examine trends in Net Primary Production (NPP) from 2000 to 2011 as an indicator of productivity and health condition of the woody vegetation across the SWAU region. To do so, we examine NPP estimates derived from satellite imagery and climate data to answer the questions: (1) what is the extent and rate of change in NPP for the SWAU region over the study period, and (2) how important is fire as a contributing factor in the observed trends? Our results suggest that, similar to the global trend in Mediterranean ecosystems, between 2000 and 2011, overall NPP declined across the study region, with the majority of declines occurring in the ecological transition zone between trees and shrubs. Twenty-six percent of the 37,042 square kilometre of woody vegetation that showed a declining NPP trend, was affected by fire. The overall rate of NPP decline for the region was estimated to be −0.38 megaton C per year since 2000, indicating a reduction in the capacity of the region to act as a carbon sink. Under climate change projections, the observed decline trends are likely to continue and our results suggest that the carbon storage potential in this region is gradually decreasing following an ecological shift from tall tree-dominated to lower shrub-dominated vegetation.  相似文献   

6.
As a result of human activities, natural Mediterranean landscapes (including agro-ecosystems) are characterised by a mosaic-like structure with habitat-patches at different successional stages. These systems have high biodiversity levels and are home to a large number of species protected by European laws whose habitats should be adequately managed. In the present work, we study habitat use from an applied point of view in the spur-thighed tortoise Testudo graeca, an endangered reptile present in semi-arid Mediterranean agro-ecosystems. Results show that, at a landscape scale, the species selects simplified vegetation structures and includes in its home range re-colonisation shrubland and small non-irrigated fields. Within the home range, habitat selection patterns vary and areas with higher vegetation cover and complexity are selected. Detected patterns are discussed in terms of the ecological requirements of the species and with a hierarchical view of resources and conditions. The implications of our findings for habitat management aimed at the conservation of the species are also discussed.  相似文献   

7.
Bioclimates are syntheses of climatic variables into biologically relevant categories that facilitate comparative studies of biotic responses to climate conditions. Isobioclimates, unique combinations of bioclimatic indices (continentality, ombrotype, and thermotype), were constructed for northern California coastal ranges based on the Rivas-Martinez worldwide bioclimatic classification system for the end of the 20th century climatology (1971–2000) and end of the 21st century climatology (2070–2099) using two models, Geophysical Fluid Dynamics Laboratory (GFDL) model and the Parallel Climate Model (PCM), under the medium-high A2 emission scenario. The digitally mapped results were used to 1) assess the relative redistribution of isobioclimates and their magnitude of change, 2) quantify the loss of isobioclimates into the future, 3) identify and locate novel isobioclimates projected to appear, and 4) explore compositional change in vegetation types among analog isobioclimate patches. This study used downscaled climate variables to map the isobioclimates at a fine spatial resolution −270 m grid cells. Common to both models of future climate was a large change in thermotype. Changes in ombrotype differed among the two models. The end of 20th century climatology has 83 isobioclimates covering the 63,000 km2 study area. In both future projections 51 of those isobioclimates disappear over 40,000 km2. The ordination of vegetation-bioclimate relationships shows very strong correlation of Rivas-Martinez indices with vegetation distribution and composition. Comparisons of vegetation composition among analog patches suggest that vegetation change will be a local rearrangement of species already in place rather than one requiring long distance dispersal. The digitally mapped results facilitate comparison with other Mediterranean regions. Major remaining challenges include predicting vegetation composition of novel isobioclimates and developing metrics to compare differences in climate space.  相似文献   

8.
Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus.  相似文献   

9.
Information from four archival literature sources from the late 19th century was matched to present-day plant species distribution data for the region of Turnhout (Belgium) and for 15 smaller sub-regions within this region. In the entire study area 25% of the species recorded in the late 19th century went extinct during the 20th century and the extinction rate doubled at the more detailed sub-region level. Binary survival-extinction data and continuous residuals from a linear regression between historical and present-day abundance categories were used to investigate underlying ecological factors of change including habitat preference, ecological amplitude and life strategy. Species increasing relative to the overall trend were generally correlated with nutrient-rich habitats while declining species were more associated with nutrient-poor situations. Generalist species have become relatively more common whilst habitat specialists have strongly declined, resulting in a flora with many ‘losers’ and a few tolerant ‘winners’. The winners are often competitive species while the losers are mainly stress-tolerating species and species with combined life strategies (e.g. SC, SR). Correlations between the decline of historically present habitats and extinction rates of related habitat specialist species show clear trends. We suggest the most important factors involved in changes in flora diversity and vegetation composition are habitat loss due to urbanization and habitat deterioration, mainly due to agricultural intensification.  相似文献   

10.
Processes derived from global change such as land-use changes, climate warming or modifications in the perturbation regime may have opposite effects on forest extent and structure with still unknown consequences on forest biodiversity at large spatial scales. In the present study, we aimed at determining forest dynamics associated with global change processes (forest spread, maturation and fire) that have driven the variation in forest bird distributions in Mediterranean forest ecosystems in recent years. The study was located in Catalonia (NE Spain) and used changes in richness of specialist and generalist forest bird species in the last 20 years of the 20th century as indicators of forest biodiversity change. Forest bird distribution changes showed strong spatial patterns and appeared to be related to population processes occurring beyond sampling units (10 km × 10 km squares). Forest maturation appeared as the most important driver of such changes because most of the studied species have a non-Mediterranean origin and are associated with more mature forests. To a lower degree, forest spread also contributed to forest bird distribution changes whereas the impact of forest fires was not associated to a decrease in the richness of either group of forest species. Given the relatively coarse scale at which our study was conducted, caution should be taken when extrapolating our results to the possible future impacts of climate change on fire regime and forest bird distribution. Our results indicate that large-scale forest maturation and spread due mainly to land abandonment in Catalonia has overridden the potentially negative effects of fires on forest bird distributions and are currently driving changes in forest biodiversity patterns across the region.  相似文献   

11.
Aim We developed a model enabling us to evaluate the contribution of both natural and human‐related factors to butterfly species richness in Catalonia, a Mediterranean area that harbours one of the most diverse butterfly faunas in Europe. Location The study was carried out in Catalonia (north‐east Iberian Peninsula), a region of 31,930 km2 lying between the Pyrenees, the Ebro depression and the Mediterranean sea. Methods Data from the Catalan Butterfly Monitoring Scheme were used to assess butterfly species richness from 55 transects spread all over the region. Three groups of environmental variables likely to affect the presence of butterfly species were calculated, above all from geographic information system data: (1) climatology and topography, (2) vegetation structure and (3) human disturbance. Because climatic and topographic variables are expected to be strongly correlated, we first performed a principal component analysis (PCA) to create a summarizing factor that would account for most of the variance within this set of variables. Subsequently, a backward stepwise multiple regression was performed in order to assess the effects of environmental factors on butterfly species richness. Results A total of 131 species were detected in the monitoring transects, representing 75.7% of the butterfly fauna known from Catalonia. Mean species richness per transect and per year was 41.4, although values varied greatly among sites (range: 14–76.8). The final regression model explained more than 80% of the total variance, which indicated a strong association between butterfly species richness and the studied environmental factors. The model revealed the very important contribution of climatic and topographic variables, which were combined into a single factor in the PCA. In contrast to what has been found in other, more northerly countries, species richness was negatively correlated with temperature and positively correlated with rainfall, except for extreme cold and wet conditions. This may be a consequence of the predictably adverse effects of the Mediterranean summer drought on herbivorous insects, and the fact that the limits of distribution of many butterflies correlate well with climatic variables. Human disturbance (defined as the proportion of urban and agricultural landscape cover in buffer areas of 5 km around the transect sites) was the second most important predictor for species richness. We found that a significant decrease in species numbers was associated with an increase in human pressure, a finding that indicates that not only building development, but also modern‐day agricultural practices are detrimental to the conservation of Mediterranean butterflies. Surprisingly, vegetation variables had an almost negligible effect on butterfly species richness. Main conclusions Our findings strongly indicate that the current motors of global change will have a negative effect on Mediterranean butterfly assemblages. First, changes in land‐use are transforming and fragmenting the landscape into an inhospitable and less permeable matrix for butterflies. Secondly, the negative correlation between species richness and temperature will lead to a predictable loss of diversity over the coming years, as predicted in the most plausible scenarios of climate change. Considering the high butterfly richness characterizing the Mediterranean Basin, this future trend will pose a serious threat to biodiversity.  相似文献   

12.
Biological invasions are regarded as one of the main drivers of habitat degradation in island ecosystems. Mediterranean islands have been subjected to a high degree of land conversion over the past 60 years, resulting in a massive reduction in the amount of rural land and the sprawl of tourist activities. The aims of this paper are to evaluate the current level of invasion of alien plant species in semi-natural vegetation types that have developed after the abandonment of agriculture and to analyze the relationships between non-native species, native flora, and environmental characteristics. Two Italian islands (Ponza and Ventotene) were surveyed using a random-stratified sampling. The occurrence and relative cover of alien plant species were compared and separate analyses were performed for the native flora. Abundance patterns of both native and alien species were then studied in the light of the environmental and anthropogenic features. Although we found that some non-native species are extremely widespread, their relative cover at the plot level is low. Permutational Multivariate Analysis of Variance and Indicator Species Analysis revealed dissimilarities in the native species composition, while Mann–Whitney and Kruskal–Wallis tests showed differences in the ecological requirements (moisture, soil reaction, and nitrogen) of the native species pool. Canonical Correspondence Analysis pointed to the importance of the proximity to agricultural areas, human disturbance, and past land management, particularly residual terraces, in determining the difference between plant communities on the two islands. The results of our study suggest that traditional forms of agriculture may represent a key element for countering the establishment and spread of non-native plants in Mediterranean areas.  相似文献   

13.
Carmel  Yohay  Kadmon  Ronen 《Plant Ecology》1999,145(2):243-254
The dynamics of Mediterranean vegetation over 28 years was studied in the Northern Galilee Mountains, Israel, in order to identify and quantify the major factors affecting it at the landscape scale. Image analysis of historical and current aerial photographs was used to produce high resolution digital vegetation maps (pixel size = 30 cm) for an area of 4 km2 in the Galilee Mountains, northern Israel. GIS tools were used to produce corresponding maps of grazing regime, topographic indices and other relevant environmental factors. The effects of those factors were quantified using a multiple regression analyses. Major changes in the vegetation occurred during the period studied (1964–1992); tree cover increased from 2% in 1964 to 41% in 1992, while herbaceous vegetation cover decreased from 56% in 1964 to 24% in 1992. Grazing, topography and initial vegetation cover were found to significantly affect present vegetation patterns. Both cattle grazing and goat grazing reduced the rate of increase in tree cover, yet even intensive grazing did not halt the process. Grazing affected also the woody-herbaceous vegetation dynamics, reducing the expansion of woody vegetation. Slope, aspect, and the interaction term between these two factors, significantly affected vegetation pattern. Altogether, 56% and 72% of the variability in herbaceous and tree cover, respectively, was explained by the regression models. This study indicates that spatially explicit Mediterranean vegetation dynamics can be predicted with fair accuracy using few biologically important environmental variables.  相似文献   

14.
Climate change is expected to alter the magnitude and variation of flow in streams and rivers, hence providing new conditions for riverine communities. We evaluated plant ecological responses to climate change by transplanting turfs of riparian vegetation to new elevations in the riparian zone, thus simulating expected changes in water‐level variation, and monitored the results over 6 years. Turfs moved to higher elevations decreased in biomass and increased in species richness, whereas turfs transplanted to lower elevations gained biomass but lost species. Transplanted plant communities responded slowly to the new hydrologic conditions. After 6 years, biomass of transplanted turfs was statistically indistinguishable from target level controls, but species richness and species composition of transplants were intermediate between original and target levels. By using projections of future stream flow according to IPCC climate change scenarios, we predict likely changes to riparian vegetation in boreal rivers. Climate‐driven hydrologic changes are predicted to result in narrower riparian zones along the studied Vindel River in northern Sweden towards the end of the 21st century. Present riparian plant communities are projected to be replaced by terrestrial communities at high elevations as a result of lower‐magnitude spring floods, and by amphibious or aquatic communities at low elevations as a result of higher autumn and winter flows. Changes to riparian vegetation may be larger in other boreal climate regions: snow melt fed spring floods are predicted to disappear in southern parts of the boreal zone, which would result in considerable loss of riparian habitat. Our study emphasizes the importance of long‐term ecological field experiments given that plant communities often respond slowly and in a nonlinear fashion to external pressures.  相似文献   

15.
While intensification of human activities and its ecological effects in many natural areas have recently received much attention, land abandonment in marginal areas is still the largely ignored side of a process rooted in the same socioeconomic context. Decreasing human impact in marginal rural areas often triggers a recovery of seminatural vegetation. Over a period of 25 years, we studied the changes in landscape and vegetation structure that followed land abandonment in a traditional Mediterranean mosaic of crops, grasslands, shrublands and woodlands, and assessed their effects on songbird occurrence and distribution. We combined an analysis of vegetation changes based on aerial photo interpretation with an analysis of bird censuses from 1978, 1992 and 2003 at two spatial scales: landscape and census plot (respectively 2800 and 3 ha). The perceived temporal changes in the vegetation were scale dependent. At the landscape scale, open habitats tended to disappear and woodlands matured. The contrasts in vegetation structure that defined habitat patches at the onset of the study tended to disappear. There was an overall shift of the bird community in favour of woodland species. At the scale of the census plot, however, the colonization by woody vegetation of patches formerly characterized by a homogeneous grass cover increased the local diversity of the vegetation, at least temporarily. Of seven species dependent on open habitats, the occurrence rate of five species significantly decreased, whereas it increased for two species: woodlark (Lulula arborea) and melodious warbler (Hippolais polyglotta). This increase was linked to the transitional increase in local vegetation diversity. In patches originally dominated by woodlands, local vegetation diversity decreased as woody vegetation expanded into clearings. The occurrence rate significantly increased for seven species relying on closed woodlands, while it decreased for two woodland species. As most species of high conservation profile in the Mediterranean are tied to open or to heterogeneous transitional habitats, these trends raise questions concerning their persistence in the future.  相似文献   

16.
17.
This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36–113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region’s historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.  相似文献   

18.
This study develops an approach to automating the process of vegetation cover estimates using computer vision and pattern recognition algorithms. Visual cover estimation is a key tool for many ecological studies, yet quadrat‐based analyses are known to suffer from issues of consistency between people as well as across sites (spatially) and time (temporally). Previous efforts to estimate cover from photograps require considerable manual work. We demonstrate that an automated system can be used to estimate vegetation cover and the type of vegetation cover present using top–down photographs of 1 m by 1 m quadrats. Vegetation cover is estimated by modelling the distribution of color using a multivariate Gaussian. The type of vegetation cover is then classified, using illumination robust local binary pattern features, into two broad groups: graminoids (grasses) and forbs. This system is evaluated on two datasets from the globally distributed experiment, the Nutrient Network (NutNet). These NutNet sites were selected for analyses because repeat photographs were taken over time and these sites are representative of very different grassland ecosystems—a low stature subalpine grassland in an alpine region of Australia and a higher stature and more productive lowland grassland in the Pacific Northwest of the USA. We find that estimates of treatment effects on grass and forb cover did not differ between field and automated estimates for eight of nine experimental treatments. Conclusions about total vegetation cover did not correspond quite as strongly, particularly at the more productive site. A limitation with this automated system is that the total vegetation cover is given as a percentage of pixels considered to contain vegetation, but ecologists can distinguish species with overlapping coverage and thus can estimate total coverage to exceed 100%. Automated approaches such as this offer techniques for estimating vegetation cover that are repeatable, cheaper to use, and likely more reliable for quantifying changes in vegetation over the long‐term. These approaches would also enable ecologists to increase the spatial and temporal depth of their coverage estimates with methods that allow for vegetation sampling over large spatial scales quickly.  相似文献   

19.
The opening of the Suez Canal in 1869 caused a migration generally from the Red Sea to the Mediterranean, rarely the opposite direction, and 63 lessepsian fish species penetrated into the Mediterranean by way of this canal. These species usually spread northward and most of them can establish wide populations in this area, but some of them can not be successful with respect to establishment. Thus, it is clearly seen that there are a lot of factors influencing the success of species with respect to migration, spreading and establishment. So, the lessepsian migration has been formed by the effects of these factors. Lessepsian species also have the ability to adapt to the ecological conditions of their new environment. Therefore, the influential factors, their effectiveness and the observed changes in lessepsian species due to the effects of these factors have been discussed by considering fishes in this paper.  相似文献   

20.
Abstract

The aim of the present study is to demonstrate the value of some nitrophilous plants as bioindicators related to global warming. As a case study, the space–time dynamics of the populations of some nitrophilous and ruderal species have been investigated along the southern-central Adriatic side of the Italian Peninsula. These have been examined according to the range of their distribution areas, to their ecological needs, and to the availability of past data, which have then been related to the data on global warming across the same territories. The choice for this investigation was for nitrophilous species with a Mediterranean distribution – of the Stenomediterranean type – and for some recent entries into the local flora as alien species. The spread of these species occurs in areas with intense human activity, where they have exploited the conditions of the warmer niche, such that their presence and their spatial spread observed over time are clearly linked to global warming. For all of the species in question, rapid increases in the population numbers have been observed, along with a northward shift of their distribution areas. These changes correspond to the increase in average annual temperature as revealed by the thermometric measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号