首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
Green and white variegation in the Arabidopsis immutans (im) mutant is caused by a nuclear recessive gene. The green sectors contain cells with normal-appearing chloroplasts, while cells in the white sectors have photooxidized plastids lacking organized lamellae. In the present experiments, we found that the green im sectors have enhanced rates of carbon assimilation (monitored by 14CO2 uptake) and that there are corresponding increases in the activities of Rubisco and SPS, elevated starch and sucrose pool sizes, and an altered pattern of carbohydrate partitioning that favors sucrose over starch. We hypothesize that these increases are due, at least in part, to interactions with white sectors, perhaps to compensate for reductions in total source tissue. Consistent with this idea, the im white sectors accumulate low levels of sucrose and acid invertase activities are markedly increased in the white versus green cells. This suggests that there is a sucrose gradient between the green and white sectors, and that sucrose is transported from the green to white cells in response to sink demand. The expression of photosynthetic genes is not appreciably altered in the green im sectors versus wild type, but rather there is an up-regulation of genes involved in defense against oxidative stress and down-regulation of genes involved in cell wall biosynthesis. We postulate that changes in photosynthesis in the im green cells are driven by a need for photoprotection (especially early in chloroplast biogenesis) and due to source-sink interactions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Variegation mutants and mechanisms of chloroplast biogenesis   总被引:6,自引:0,他引:6  
Variegated plants typically have green‐ and white‐sectored leaves. Cells in the green sectors contain normal‐appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.  相似文献   

3.
The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.  相似文献   

4.
5.
6.
7.
Control of chloroplast redox by the IMMUTANS terminal oxidase   总被引:9,自引:0,他引:9  
Variegation mutants offer excellent opportunities to study interactions between the nucleus-cytoplasm, the chloroplast, and the mitochondrion. Variegation in the immutans ( im ) mutant of Arabidopsis is induced by a nuclear recessive gene and the extent of variegation can be modulated by light and temperature. Whereas the green sectors have morphologically normal chloroplasts, the white sectors are devoid of pigments and accumulate a colourless carotenoid, phytoene. The green sectors are hypothesized to arise from cells that have avoided irreversible photooxidative damage whereas the white sectors originate from cells that are photooxidized. Cloning of the IMMUTANS ( IM ) gene has revealed that IMMUTANS (IM) is a plastid homologue of the mitochondrial alternative oxidase. This finding suggested a model in which IM functions as a redox component of the phytoene desaturation pathway, which requires phytoene desaturase activity. Consistent with this idea, IM has quinol oxidase activity in vitro. Recent studies have revealed that IM plays a more global role in plastid metabolism. For example, it appears to be the elusive terminal oxidase of chlororespiration and also functions as a light stress protein.  相似文献   

8.
9.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   

10.
11.
Epp MD 《Genetics》1973,75(3):465-483
A nuclear gene mutation in Oenothera hookeri increases the frequency of variegated sectors. The gene is recessive; the variegation is cytoplasmically transmitted. Once variegation is induced, the mutant gene is not required for its continued expression. The induced sectors may differ one from another. The gene expresses unique patterns of penetrance and of maternal effect. The genetic data implicate the chloroplasts as the site for the expression of variegation. The chloroplasts of O. parviflora are also subject to the action of the nuclear gene. Possible mechanisms by which a gene might cause chloroplasts to mutate are discussed.  相似文献   

12.
Summary Recently, Lindenhahn et al. (1985) hypothesized that the plastome mutator (pm) system in Oenothera originated through contaiminating cross-pollination and that the variegation was an example of hybrid plastome-genome incompatibility. Their evidence was based on restriction pattern analyses of white sectors which showed wild-type plastome III patterns rather than the wild-type plastome I patterns of the green portions of their plants. Their hypothesis does not adequately account for the results which our laboratories have obtained independently; the pm-system of Oenothera continues to generate many new and different plastome mutations following the genetic parameters as published originally (Epp 1973). Our studies support mutator gene function. The restriction pattern of the chloroplast DNA of five newly isolated pm-induced variegation sectors are reported here to show a restriction pattern identical to the green wild-type plastids. The restriction pattern reported by Lindenhahn et al. (1985) for their white sector plastids is different than we would expect from a pm-induced plastome mutation. Their overall analysis did not utilize many of the salient features of the genetics of Oenothera and of the pm-system. The white sectors they observed are probably due to an accidental contamination by plastome III plastids. Suggestions are made for delineating experimentally plastome mutations and hybrid incompatibility. For future analyses, a comparative study of numerous pm-induced sectors is recommended, since the pm-system readily generates many different plastome mutations with independent origins. This comparison would greatly assist in the interpretation of restriction patterns.  相似文献   

13.
Variegation mutants are ideal model systems to study chloroplast biogenesis.We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes.In this review,we focus on the Arabidopsis var2 variegation mutant,and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation.VAR2 is a subunit of the chloroplast FtsH complex,which is involved in turnover of the Photosystem Ⅱ reaction center D1 protein,as well as in other processes required for the development and maintenance of the photosynthetic apparatus.The cells in green sectors of var2have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lameliae.To explain the mechanism of var2 variegation,we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2.To gain insight into these activities,second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes.Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression,including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

14.
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and whitesectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with nonvariegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.  相似文献   

15.
16.
17.
We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell pepper (Capsicum annuum) fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6f complex, the ATPase complex, and Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts. This is also true for ferredoxin (Fd) and Fd-dependent NADP reductase, suggesting that ferredoxin retains a central role in the chromoplasts’ redox metabolism. There is a significant increase in the amount of enzymes of the typical metabolism of heterotrophic plastids, such as the oxidative pentose phosphate pathway (OPPP) and amino acid and fatty acid biosynthesis. Enzymes of chlorophyll catabolism and carotenoid biosynthesis increase in abundance, supporting the pigment reorganization that goes together with chromoplast differentiation. The majority of plastid encoded proteins decline but constituents of the plastid ribosome and AccD increase in abundance. Furthermore, the amount of plastid terminal oxidase (PTOX) remains unchanged despite a significant increase in phytoene desaturase (PDS) levels, suggesting that the electrons from phytoene desaturation are consumed by another oxidase. This may be a particularity of non-climacteric fruits such as bell pepper that lack a respiratory burst at the onset of fruit ripening.  相似文献   

18.
Summary Resistance to streptomycin and lincomycin in plant cell culture is used as a color marker: resistant cells are green whereas sensitive cells are white on the selective medium. Streptomycin and lincomycin at appropriate concentrations do not kill sensitive Nicotiana cells. The selective value of plastid ribosomal DNA mutations, conferring resistance to streptomycin and lincomycin, was investigated by growing heteroplastidic cells on a selective medium. The heteroplastidic cells were obtained by protoplast fusion, and contained a mixed population of streptomycin resistant plastids from the N. tabacum line Nt-SR1-Kan2, and lincomycin resistant plastids from the N. plumbaginifolia line Np-LR400-Hyg1. Clones derived from protoplast fusion were selected by kanamycin and hygromycin resistance, transgenic nuclear markers. Somatic hybrids were then grown on a selective streptomycin or lincomycin medium, or in the absence of either drug to a 50 to 100 mg size callus. Southern analysis of a polymorphic region of plastid DNA (ptDNA) revealed that somatic hybrids grown on streptomycin contained almost exclusively ptDNA from the streptomycin resistant parent, somatic hybrids grown on lincomycin contained almost exclusively ptDNA from the lincomycin resistant parent whereas somatic hybrids grown in the absence of either drug contained mixed parental plastids. Sensitive ptDNA was below detection level in most clones on selective medium, but could be recovered upon subsequent culture in the presence of the appropriate drug. The drugs streptomycin and lincomycin provide a powerful selection pressure that should facilitate recovery of plastid transformants.  相似文献   

19.
Variegated plants have green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors contain non-pigmented plastids that lack organized lamellar structures. Many variegations are caused by mutations in nuclear genes that affect plastid function, yet in only a few cases have the responsible genes been cloned. We show that mutations in the nuclear VAR2 locus of Arabidopsis cause variegation due to loss of a chloroplast thylakoid membrane protein that bears similarity to the FtsH family of AAA proteins (ATPases associated with diverse cellular activities). Escherichia coli FtsH is a chaperone metalloprotease that functions in a number of diverse membrane-associated events. Although FtsH homologs have been identified in multicellular organisms, their functions and activities are largely unknown; we provide genetic in vivo evidence that VAR2 functions in thylakoid membrane biogenesis. We have isolated four var2 alleles and they have allowed us to define domains of the protein that are required for activity. These include two putative ATP-binding sites. VAR2 protein amounts generally correlate with the severity of the var2 mutant phenotype. One allele lacks detectable VAR2 protein, suggesting that the mechanism of var2 variegation involves the action of a redundant activity in the green sectors. We conclude that redundant activities may be a general mechanism to explain nuclear gene-induced plant variegations.  相似文献   

20.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis-the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号