首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   

3.
Once the plant coenzyme A (CoA) biosynthetic pathway has been elucidated by comparative genomics, it is feasible to analyze the physiological relevance of CoA biosynthesis in plant life. To this end, we have identified and characterized Arabidopsis (Arabidopsis thaliana) T-DNA knockout mutants of two CoA biosynthetic genes, HAL3A and HAL3B. The HAL3A gene encodes a 4'-phosphopantothenoyl-cysteine decarboxilase that generates 4'-phosphopantetheine. A second gene, HAL3B, whose gene product is 86% identical to that of HAL3A, is present in the Arabidopsis genome. HAL3A appears to have a predominant role over HAL3B according to their respective mRNA expression levels. The hal3a-1, hal3a-2, and hal3b mutants were viable and showed a similar growth rate as that in wild-type plants; in contrast, a hal3a-1 hal3b double mutant was embryo lethal. Unexpectedly, seedlings that were null for HAL3A and heterozygous for HAL3B (aaBb genotype) displayed a sucrose (Suc)-dependent phenotype for seedling establishment, which is in common with mutants defective in beta-oxidation. This phenotype was genetically complemented in aaBB siblings of the progeny and chemically complemented by pantethine. In contrast, seedling establishment of Aabb plants was not Suc dependent, proving a predominant role of HAL3A over HAL3B at this stage. Total fatty acid and acyl-CoA measurements of 5-d-old aaBb seedlings in medium lacking Suc revealed stalled storage lipid catabolism and impaired CoA biosynthesis; in particular, acetyl-CoA levels were reduced by approximately 80%. Taken together, these results provide in vivo evidence for the function of HAL3A and HAL3B, and they point out the critical role of CoA biosynthesis during early postgerminative growth.  相似文献   

4.
Variegation in the immutans ( im ) mutant of Arabidopsis is induced by a nuclear recessive gene. The white leaf sectors of im contain abnormal plastids lacking pigments and organized lamellae, whereas the green leaf sectors possess normal-appearing chloroplasts. IMMUTANS codes for a thylakoid membrane terminal oxidase that functions as a safety valve to dissipate excess energy. Previous studies have shown that the green sectors of im , regardless of illumination conditions, have anatomical adaptations that are reminiscent of acclimation to high-light stress. It has been suggested that these adaptations provide a means of enhancing photosynthesis to feed the white sectors and maximize plant growth. We have utilized Chl fluorescence imaging to better understand these compensatory mechanisms using, as our experimental material, im leaves with predominantly green ( img ) or predominantly white ( imw ) tissues. The samples were examined under conditions of normal growth or high-light stress (photoinhibition). Steady-state fluorescence quenching revealed that the green sectors of the imw leaves had lower levels of 1 −  q p than the img leaves, and that this was accompanied by increased electron transport rates. In response to short-term high-light exposure, the green sectors of the imw leaves displayed enhanced non-photochemical quenching (NPQ), which correlated with increased xanthophyll pool sizes and increased amounts of several different Lhcb polypeptides and the PsbS protein. In summary, our data show that, compared with primarily green leaves ( img ), the green sectors of predominantly white leaves ( imw ) have elevated rates of electron transport and an enhanced NPQ capacity. We conclude that, in the absence of IM, green sectors develop morphological and biochemical adaptations that allow them to maximize photosynthesis to feed the white sectors, and to protect against photodamage.  相似文献   

5.
6.
7.
The temperature-sensitive mutant of Arabidopsis , chs5 , developed chlorotic leaves at restrictive temperatures (15°C), but almost normal green leaves at permissive temperatures (22°C). At the restrictive temperature, the chs5 mutation blocked the accumulation of chlorophylls and carotenoids. A temperature-shift analysis revealed that the manifestation of the chlorotic phenotype occurred in young leaf tissues, but did not in mature leaf tissues. Genetic and sequence analysis demonstrated that the chs5 mutation was caused by a single-base change in the coding region of a recently identified CLA1 gene. The CLA1 gene exhibited a high sequence similarity to the genes encoding 1-deoxy- d -xylulose 5-phosphate synthase (DXS) localized to the non-mevalonate pathway, which was recently discovered in bacteria and higher plants. In addition, the application of 1-deoxy- d -xylulose, the free sugar of 1-deoxy- d -xylulose 5-phosphate, rescues the defect in the chs5 mutant. These results indicated that the chlorotic phenotype of the chs5 mutant was caused by a defect in DXS activity and that DXS functions preferentially at an early stage of leaf cell development. A transiently expressed green fluorescent protein fused with the CLA1 transit peptide was localized within the chloroplasts in the green cultured cells of tobacco, which suggests that the putative localization of the non-mevalonate pathway is in plastids.  相似文献   

8.
The HY1 locus of Arabidopsis is necessary for phytochrome chromophore biosynthesis and is defined by mutants that show a long hypocotyl phenotype when grown in the light. We describe here the molecular cloning of the HY1 gene by using chromosome walking and mutant complementation. The product of the HY1 gene shows significant similarity to animal heme oxygenases and contains a possible transit peptide for transport to plastids. Heme oxygenase activity was detected in the HY1 protein expressed in Escherichia coli. Heme oxygenase catalyzes the oxygenation of heme to biliverdin, an activity that is necessary for phytochrome chromophore biosynthesis. The predicted transit peptide is sufficient to transport the green fluorescent protein into chloroplasts. The accumulation of the HY1 protein in plastids was detected by using immunoblot analysis with an anti-HY1 antiserum. These results indicate that the Arabidopsis HY1 gene encodes a plastid heme oxygenase necessary for phytochrome chromophore biosynthesis.  相似文献   

9.
Inactivation of a plastid located quinone-oxygen oxidoreductase gene in the immutans Arabidopsis mutant leads to a photobleached phenotype because of a lack of photoprotective carotenoids. Inactivation of the corresponding gene in the ghost tomato mutant leads to a similar phenotype in leaves and to carotenoid deficiency in petals and ripe fruits. This plastid terminal oxidase (the first to be cloned and biochemically characterized) resembles the mitochondrial cyanide-insensitive alternative oxidase. Here, we propose a model integrating this novel oxidase as a component of an electron transport chain associated to carotenoid desaturation, as well as to a respiratory activity within plastids.  相似文献   

10.
The transition to flowering is a crucial moment in a plant's life cycle of which the mechanism has only been partly revealed. In a screen for early flowering, after mutagenesis of the late-flowering fwa mutant of Arabidopsis thaliana, the early flowering in short days (efs) mutant was identified. Under long-day light conditions, the recessive monogenic efs mutant flowers at the same time as wild type but, under short-day conditions, the mutant flowers much earlier. In addition to its early-flowering phenotype, efs has several pleiotropic effects such as a reduction in plant size, fertility and apical dominance. Double mutant analysis with several late-flowering mutants from the autonomous promotion (fca and fve) and the photoperiod promotion (co, fwa and gi) pathways of flowering showed that efs reduces the flowering time of all these mutants. However, efs is completely epistatic to fca and fve but additive to co, fwa and gi, indicating that EFS is an inhibitor of flowering specifically involved in the autonomous promotion pathway. A vernalisation treatment does not further reduce the flowering time of the efs mutant, suggesting that vernalisation promotes flowering through EFS. By comparing the length of the juvenile and adult phases of vegetative growth for wild-type, efs and the double mutant plants, it is apparent that efs mainly reduces the length of the adult phase.  相似文献   

11.
The Arabidopsis DEETIOLATED2 (DET2) gene has been cloned and shown to encode a protein that shares significant sequence identity with mammalian steroid 5 alpha-reductases. Loss of DET2 function causes many defects in Arabidopsis development that can be rescued by the application of brassinolide; therefore, we propose that DET2 encodes a reductase that acts at the first step of the proposed biosynthetic pathway--in the conversion of campesterol to campestanol. Here, we used biochemical measurements and biological assays to determine the precise biochemical defect in det2 mutants. We show that DET2 actually acts at the second step in brassinolide biosynthesis in the 5 alpha-reduction of (24R)-24-methylcholest-4-en-3-one, which is further modified to form campestanol. In feeding experiments using 2H6-labeled campesterol, no significant level of 2H6-labeled campestanol was detected in det2, whereas the wild type accumulated substantial levels. Using gas chromatography-selected ion monitoring analysis, we show that several presumed null alleles of det2 accumulated only 8 to 15% of the wild-type levels of campestanol. Moreover, in det2 mutants, the endogenous levels of (24R)-24-methylcholest-4-en-3-one increased by threefold, whereas the levels of all other measured brassinosteroids accumulated to < 10% of wild-type levels. Exogenously applied biosynthetic intermediates of brassinolide were found to rescue both the dark- and light-grown defects of det2 mutants. Together, these results refine the original proposed pathway for brassinolide and indicate that mutations in DET2 block the second step in brassinosteroid biosynthesis. These results reinforce the utility of combining genetic and biochemical analyses to studies of biosynthetic pathways and strengthen the argument that brassinosteroids play an essential role in Arabidopsis development.  相似文献   

12.
Applications of chloroplast engineering in agriculture and biotechnology will depend critically on success in extending the crop range of chloroplast transformation, and on the feasibility of expressing transgenes in edible organs (such as tubers and fruits), which often are not green and thus are much less active in chloroplast gene expression. We have improved a recently developed chloroplast-transformation system for tomato plants and applied it to engineering one of the central metabolic pathways in fruits: carotenoid biosynthesis. We report that plastid expression of a bacterial lycopene beta-cyclase gene results in herbicide resistance and triggers conversion of lycopene, the main storage carotenoid of tomatoes, to beta-carotene, resulting in fourfold enhanced pro-vitamin A content of the fruits. Our results demonstrate the feasibility of engineering nutritionally important biochemical pathways in non-green plastids by transformation of the chloroplast genome.  相似文献   

13.
Plastid isoprenoids are synthesized via the 2-C-methyl-D-erythritol 4-phosphate pathway. A few years after its discovery, most of the Escherichia coli genes involved in the pathway have been identified, including gcpE. In this work, we have identified an Arabidopsis thaliana protein with homology to the product of this gene. The plant polypeptide, GCPE, contains two structural domains that are absent in the E. coli protein: an N-terminal extension and a central domain of 30 kDa. We demonstrate that the N-terminal region targets the Arabidopsis protein to chloroplasts in vivo, consistent with its role in plastid isoprenoid biosynthesis. Although the presence of the internal extra domain may have an effect on activity, the Arabidopsis mature GCPE was able to complement a gcpE-defective E. coli strain, indicating the plant protein is a true functional homologue of the bacterial gcpE gene product.  相似文献   

14.
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.  相似文献   

15.
16.
17.
NAD is a ubiquitous coenzyme involved in oxidation-reduction reactions and is synthesized by way of quinolinate. Animals and some bacteria synthesize quinolinate from tryptophan, whereas other bacteria synthesize quinolinate from aspartate (Asp) using L-Asp oxidase and quinolinate synthase. We show here that Arabidopsis (Arabidopsis thaliana) uses the Asp-to-quinolinate pathway. The Arabidopsis L-Asp oxidase or quinolinate synthase gene complemented the Escherichia coli mutant defective in the corresponding gene, and T-DNA-based disruption of either of these genes, as well as of the gene coding for the enzyme quinolinate phosphoribosyltransferase, was embryo lethal. An analysis of functional green fluorescent protein-fused constructs and in vitro assays of uptake into isolated chloroplasts demonstrated that these three enzymes are located in the plastid.  相似文献   

18.
Cara Cara is a spontaneous bud mutation of Navel orange (Citrus. sinensis L. Osbeck) characterized by developing fruits with a pulp of bright red coloration due to the presence of lycopene. Peel of mutant fruits is however orange and indistinguishable from its parental. To elucidate the basis of lycopene accumulation in Cara Cara, we analyzed carotenoid profile and expression of three isoprenoid and nine carotenoid genes in flavedo and pulp of Cara Cara and Navel fruits throughout development and maturation. The pulp of the mutant accumulated high amounts of lycopene, but also phytoene and phytofluene, from early developmental stages. The peel of Cara Cara also accumulated phytoene and phytofluene. The expression of isoprenoid genes and of carotenoid biosynthetic genes downstream PDS (phytoene desaturase) was higher in the pulp of Cara Cara than in Navel. Not important differences in the expression of these genes were observed between the peel of both oranges. Moreover, the content of the plant hormone ABA (abscisic acid) was lower in the pulp of Cara Cara, but the expression of two genes involved in its biosynthesis was higher. The results suggest that an altered carotenoid composition may conduct to a positive feedback regulatory mechanism of carotenoid biosynthesis in citrus fruits. Increased levels of isoprenoid precursors in the mutant that could be channeled to carotenoid biosynthesis may be related to the red-fleshed phenotype of Cara Cara.  相似文献   

19.
20.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号