首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Rho GTPases regulate multiple cellular events, their role in cell division is still obscure. Here we show that expression of a GTPase-activating protein (GAP)-deficient mutant (R386A) of the Rho regulator MgcRacGAP induces abnormal cortical activity during cytokinesis in U2OS cells. Multiple large blebs were observed in cells expressing MgcRacGAP R386A from the onset of anaphase to the late stage of cell division. When mitotic blebbing was excessive, cytokinesis was inhibited, and cells with micronuclei were generated. It has been reported that blebbing is caused by abnormal cortical activity. The MgcRacGAP R386A-induced abnormal cortical activity was inhibited by the dominant negative form of RhoA, but not Rac1 or Cdc42. Moreover, expression of constitutively active RhoA also induced drastic cortical activity during cytokinesis. Unlike apoptotic blebbing, MgcRacGAP R386A-induced blebbing was not inhibited by the ROCK inhibitor Y-27632, suggesting that MgcRacGAP regulates cortical activity during cytokinesis through a novel signaling pathway. We propose that MgcRacGAP plays a pivotal role in cytokinesis by regulating cortical movement through RhoA.  相似文献   

2.
DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein–interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku−/− mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847.  相似文献   

3.
During cell division, chromosome segregation must be coordinated with cell cleavage so that cytokinesis occurs after chromosomes have been safely distributed to each spindle pole. Polo-like kinase 1 (Plk1) is an essential kinase that regulates spindle assembly, mitotic entry and chromosome segregation, but because of its many mitotic roles it has been difficult to specifically study its post-anaphase functions. Here we use small molecule inhibitors to block Plk1 activity at anaphase onset, and demonstrate that Plk1 controls both spindle elongation and cytokinesis. Plk1 inhibition did not affect anaphase A chromosome to pole movement, but blocked anaphase B spindle elongation. Plk1-inhibited cells failed to assemble a contractile ring and contract the cleavage furrow due to a defect in Rho and Rho-GEF localization to the division site. Our results demonstrate that Plk1 coordinates chromosome segregation with cytokinesis through its dual control of anaphase B and contractile ring assembly.  相似文献   

4.
Cytokinesis of animal cells requires ingression of the actomyosin-based contractile ring between segregated sister genomes. Localization of the RhoGEF Ect2 to the central spindle at anaphase promotes local activation of the RhoA GTPase, which induces assembly and ingression of the contractile ring. Here we have used BI 2536, an inhibitor of the mitotic kinase Plk1, to analyze the functions of this enzyme during late mitosis in human cells. We show that Plk1 acts after Cdk1 inactivation and independently from Aurora B to promote RhoA accumulation at the equator, contractile ring formation, and cleavage furrow ingression. Inhibition of Plk1 abolishes the interaction of Ect2 with its activator and midzone anchor, HsCyk-4, thereby preventing localization of Ect2 to the central spindle. We propose that late mitotic Plk1 activity promotes recruitment of Ect2 to the central spindle, triggering the initiation of cytokinesis and contributing to cleavage plane specification in human cells.  相似文献   

5.
6.
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.  相似文献   

7.
In many organisms, the small guanosine triphosphatase RhoA controls assembly and contraction of the actomyosin ring during cytokinesis by activating different effectors. Although the role of some RhoA effectors like formins and Rho kinase is reasonably understood, the functions of another putative effector, Citron kinase (CIT-K), are still debated. In this paper, we show that, contrary to previous models, the Drosophila melanogaster CIT-K orthologue Sticky (Sti) does not require interaction with RhoA to localize to the cleavage site. Instead, RhoA fails to form a compact ring in late cytokinesis after Sti depletion, and this function requires Sti kinase activity. Moreover, we found that the Sti Citron-Nik1 homology domain interacts with RhoA regardless of its status, indicating that Sti is not a canonical RhoA effector. Finally, Sti depletion caused an increase of phosphorylated myosin regulatory light chain at the cleavage site in late cytokinesis. We propose that Sti/CIT-K maintains correct RhoA localization at the cleavage site, which is necessary for proper RhoA activity and contractile ring dynamics.  相似文献   

8.
In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.  相似文献   

9.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

10.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

11.
Rho family GTPases play pivotal roles in cytokinesis. By using probes based on the principle of fluorescence resonance energy transfer (FRET), we have shown that in HeLa cells RhoA activity increases with the progression of cytokinesis. Here we show that in Rat1A cells RhoA activity remained suppressed during most of the cytokinesis. Consistent with this observation, the expression of C3 toxin inhibited cytokinesis in HeLa cells but not in Rat1A cells. Furthermore, the expression of a dominant negative mutant of Ect2, a Rho GEF, or Y-27632, an inhibitor of the Rho-dependent kinase ROCK, inhibited cytokinesis in HeLa cells but not in Rat1A cells. In contrast to the activity of RhoA, the activity of Rac1 was suppressed during cytokinesis and started increasing at the plasma membrane of polar sides before the abscission of the daughter cells in both HeLa and Rat1A cells. This type of Rac1 suppression was shown to be essential for cytokinesis because a constitutively active mutant of Rac1 induced a multinucleated phenotype in both HeLa and Rat1A cells. Moreover, the involvement of MgcRacGAP/CYK-4 in this suppression of Rac1 during cytokinesis was shown by the use of a dominant negative mutant. Because ML-7, an inhibitor of myosin light chain kinase, delayed the cytokinesis of Rat1A cells and because Pak, a Rac1 effector, is known to suppress myosin light chain kinase, the suppression of the Rac1-Pak pathway by MgcRacGAP may play a pivotal role in the cytokinesis of Rat1A cells.  相似文献   

12.
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.  相似文献   

13.
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1.  相似文献   

14.
The polo-like kinase family plays a vital role in many cell cycle related events. The family includes mammalian Plkl, Snk (Plk2), and Fnk/Prk (Plk3), Xenopus laevis Plxl,Drosophila polo, fission yeast Plol, and budding yeast Cdc5. These enzymes, in addition to a conserved kinase domain at the N-terminus, have highly conserved sequences called polo-box(s) in the non-catalytic C-terminal domain. Genetic and biochemical experiments with several different organisms have documented that polo-like kinases are involved in many aspects of the cell cycle, such as activation of Cdc2, centrosome assembly and maturation, activation of the anaphase-promoting complex (APC) during the metaphase-anaphase transition, and cytokinesis.  相似文献   

15.
16.
Cytokinesis is the final step of cell division which partitions genetic and cytosolic content into daughter cells. Failed cytokinesis causes polyploidy, genetic instability, and cancer. Kinases use phosphorylation to regulate the timing and location of the cytokinetic furrow. Polo-like kinase 1 (Plk1) is an essential mitotic kinase that triggers cytokinesis by phosphorylating MgcRacGAP to create a docking site for Ect2 at the central spindle. Ect2 binds to MgcRacGAP via its N-terminal BRCT domain (BRCA1 C-terminal), which docks at specific phosphorylated residues. Here we investigate the minimal Plk1-dependent phosphorylation sites required for cytokinesis onset. We demonstrate that phosphorylation of the major MgcRacGAP site, S157, is necessary but not sufficient to bind the Ect2 BRCT domain. Phosphorylation of an additional residue on MgcRacGAP at S164 is also required to elicit efficient binding. Surprisingly, BRCT binding additionally requires MKLP1 and its cognate interacting N-terminal domain of MgcRacGAP. Our findings indicate that central spindle assembly and 2 Plk1-dependent phosphorylations are required to establish efficient binding of the Ect2 BRCT in early cytokinesis. We propose that these requirements establish a high threshold to restrain premature or ectopic cytokinesis.  相似文献   

17.
The endgame of cytokinesis can follow one of two pathways depending on developmental context: resolution into separate cells or formation of a stable intercellular bridge. Here we show that the four wheel drive (fwd) gene of Drosophila melanogaster is required for intercellular bridge formation during cytokinesis in male meiosis. In fwd mutant males, contractile rings form and constrict in dividing spermatocytes, but cleavage furrows are unstable and daughter cells fuse together, producing multinucleate spermatids. fwd is shown to encode a phosphatidylinositol 4-kinase (PI 4-kinase), a member of a family of proteins that perform the first step in the synthesis of the key regulatory membrane phospholipid PIP2. Wild-type activity of the fwd PI 4-kinase is required for tyrosine phosphorylation in the cleavage furrow and for normal organization of actin filaments in the constricting contractile ring. Our results suggest a critical role for PI 4-kinases and phosphatidylinositol derivatives during the final stages of cytokinesis.  相似文献   

18.
The polo-like kinase (Plk) has been shown to be associated with the anaphase-promoting complex at the transition from metaphase to anaphase and to regulate ubiquitination, the process that targets proteins for degradation by proteasomes. In this study, we have identified proteasomal proteins interacting with Plk by mass spectrometry and found that Plk and 20S proteasome subunits could be reversibly immunoprecipitated from both human CA46 cells and HEK 293 cells transfected with HA-Plk. Furthermore, both coprecipitated Plk and baculovirus-expressed Plk were able to phosphorylate proteasome subunits, and metabolic labeling studies indicate that Plk is partially responsible for the phosphorylation of 20S proteasome subunits C9 and C8 in vivo. In addition, phosphorylation of proteasomes by Plk enhanced proteolytic activity toward an artificial substrate Suc-L-L-V-Y-AMC in vitro and in vivo. Finally, we were also able to detect Plk associated with 26S proteasomes under certain conditions. Together our results suggest that Plk is an important mitotic regulator of proteasome activity.  相似文献   

19.
Kostyak JC  Naik UP 《PloS one》2011,6(1):e14513
Endomitosis is a form of mitosis in which both karyokinesis and cytokinesis are interrupted and is a hallmark of megakaryocyte differentiation. Very little is known about how such a dramatic alteration of the cell cycle in a physiological setting is achieved. Thrombopoietin-induced signaling is essential for induction of endomitosis. Here we show that calcium- and integrin-binding protein 1 (CIB1), a known regulator of platelet integrin α(IIb)β(3) outside-in signaling, regulates endomitosis. We observed that CIB1 expression is increased in primary mouse megakaryocytes compared to mononuclear bone marrow cells as determined by Western blot analysis. Following PMA treatment of Dami cells, a megakaryoblastic cell line, we found that CIB1 protein expression increased concomitant with cell ploidy. Overexpression of CIB1 in Dami cells resulted in multilobated nuclei and led to increased time for a cell to complete cytokinesis as well as increased incidence of furrow regression as observed by time-lapse microscopy. Additionally, we found that surface expression of integrin α(IIb)β(3,) an important megakaryocyte marker, was enhanced in CIB1 overexpressing cells as determined by flow cytometry. Furthermore, PMA treatment of CIB1 overexpressing cells led to increased ploidy compared to PMA treated control cells. Interestingly, expression of Polo-like kinase 3 (Plk3), an established CIB1-interacting protein and a key regulator of the mitotic process, decreased upon PMA treatment of Dami cells. Furthermore, PMA treatment augmented the interaction between CIB1 and Plk3, which depended on the duration of treatment. These data suggest that CIB1 is involved in regulating endomitosis, perhaps through its interaction with Plk3.  相似文献   

20.
Polo-like kinase 2 (Plk2) is a member of the serine/threonine protein kinase family involved in cell-cycle regulation and cellular response to stresses. It is of great interest to investigate the molecular mechanisms that control the expression of Plk2. Here, using real-time PCR and Western blot assays, we show that trichostatin A (TSA), a histone deacetylase inhibitor, upregulated Plk2 mRNA and protein expression in the human osteosarcoma MG-63 cell line. Luciferase activity analysis of the truncated Plk2 promoter indicated that the region from -1220 to -830 of the Plk2 promoter was sensitive to TSA. Moreover, using the electrophoresis mobility shift assay and chromatin immunoprecipitation assay, we identified two GATA-1 responsive elements at positions -1051 and -949, to which GATA-1 binding was enhanced by TSA under in vitro and in vivo conditions. Immunoprecipitation and Western blot showed that the levels of acetylated GATA-1 were increased with TSA in MG-63 cells, consistent with their binding affinities to the GATA-1 responsive elements. In summary, these data demonstrate that acetylation plays a crucial role in Plk2 expression and acetylation of GATA-1 by TSA treatment may upregulate their DNA-binding affinities, resulting in the activation of Plk2 promoter. These results may contribute to the understanding of the molecular mechanism of Plk2 regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号