首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.  相似文献   

2.
Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.  相似文献   

3.
《遗传学报》2021,48(8):716-726
The vaginal microbiota is less complex than the gut microbiota, and the colonization of Lactobacillus in the female vagina is considered to be critical for reproductive health. Oral probiotics have been suggested as promising means to modulate vaginal homeostasis in the general population. In this study, 60 Chinese women were followed for over a year before, during, and after treatment with the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14. Shotgun metagenomic data of 1334 samples from multiple body sites did not support a colonization route of the probiotics from the oral cavity to the intestinal tract and then to the vagina. Our analyses enable the classification of the cervicovaginal microbiome into a stable state and a state of dysbiosis. The microbiome in the stable group steadily maintained a relatively high abundance of Lactobacilli over one year, which was not affected by probiotic intake, whereas in the dysbiosis group, the microbiota was more diverse and changed markedly over time. Data from a subset of the dysbiosis group suggests this subgroup possibly benefited from supplementation with the probiotics,indicating that probiotics supplementation can be prescribed for women in a subclinical microbiome setting of dysbiosis, providing opportunities for targeted and personalized microbiome reconstitution.  相似文献   

4.
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the “common ground hypothesis”, which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.  相似文献   

5.
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.  相似文献   

6.
高尿酸血症以及痛风的发病率持续升高,已经成为一个重大的公共卫生问题。肠道菌群的结构改变或失调可引起机体代谢紊乱,肠道微生态尤其与代谢性疾病的发生发展关系密切。目前研究发现高尿酸血症、痛风患者存在肠道菌群失调,降尿酸治疗后肠道菌群可发生相应改变,并且益生菌制剂具有降尿酸作用。本文概述高尿酸血症及痛风患者的肠道菌群特点,从高嘌呤及高果糖饮食对肠道菌群的影响、肠道参与嘌呤和尿酸的代谢、代谢性内毒素血症以及痛风相关炎症因子等方面探讨肠道菌群与高尿酸血症及痛风的关系,并展望肠道菌群可能成为未来诊治高尿酸血症以及痛风的一种新方法。  相似文献   

7.
The effect of psychological stress on the gastrointestinal microbiota is widely recognized. Chronic psychological stress may be associated with increased disease activity in inflammatory bowel disease, but the relationships among psychological stress, the gastrointestinal microbiota, and the severity of colitis is not yet fully understood. Here, we examined the impact of 12-week repeated water-avoidance stress on the microbiota of two inbred strains of T cell receptor alpha chain gene knockout mouse (background, BALB/c and C57BL/6) by means of next-generation sequencing of bacterial 16S rRNA genes. In both mouse strains, knockout of the T cell receptor alpha chain gene caused a loss of gastrointestinal microbial diversity and stability. Chronic exposure to repeated water-avoidance stress markedly altered the composition of the colonic microbiota of C57BL/6 mice, but not of BALB/c mice. In C57BL/6 mice, the relative abundance of genus Clostridium, some members of which produce the toxin phospholipase C, was increased, which was weakly positively associated with colitis severity, suggesting that expansion of specific populations of indigenous pathogens may be involved in the exacerbation of colitis. However, we also found that colitis was not exacerbated in mice with a relatively diverse microbiota even if their colonic microbiota contained an expanded phospholipase C-producing Clostridium population. Exposure to chronic stress also altered the concentration of free immunoglobulin A in colonic contents, which may be related to both the loss of bacterial diversity in the colonic microbiota and the severity of the colitis exacerbation. Together, these results suggest that long-term exposure to psychological stress induces dysbiosis in the immunodeficient mouse in a strain-specific manner and also that alteration of microbial diversity, which may be related to an altered pattern of immunoglobulin secretion in the gastrointestinal tract, might play a crucial role in the development of chronic stress-induced colitis.  相似文献   

8.
The intestinal microbiota is comprised of millions of microorganisms that reside in the gastrointestinal tract and consistently interact with the host. Host factors such as diet and disease status affect the composition of the microbiota, while the microbiota itself produces metabolites that can further manipulate host physiology. Dysbiosis of the intestinal microbiota has been characterized in patients with certain metabolic diseases, some of which involve damage to the host intestinal epithelial barrier and alterations in the immune system. In this review, we will discuss the consequences of dietdependent bacterial dysbiosis in the gastrointestinal tract, and how the associated interaction with epithelial and immune cells impacts metabolic diseases.  相似文献   

9.
The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice.  相似文献   

10.
11.

Background  

The gut microbiota is thought to play a key role in the development of the inflammatory bowel diseases Crohn's disease (CD) and ulcerative colitis (UC). Shifts in the composition of resident bacteria have been postulated to drive the chronic inflammation seen in both diseases (the "dysbiosis" hypothesis). We therefore specifically sought to compare the mucosa-associated microbiota from both inflamed and non-inflamed sites of the colon in CD and UC patients to that from non-IBD controls and to detect disease-specific profiles.  相似文献   

12.
13.
14.
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.  相似文献   

15.
Resistance to high-fat diet-induced obesity (DIR) has been observed in mice fed a high-fat diet and may provide a potential approach for anti-obesity drug discovery. However, the metabolic status, gut microbiota composition, and its associations with DIR are still unclear. Here, ultraperformance liquid chromatography-tandem mass spectrometry-based urinary metabolomic and 16S rRNA gene sequencing-based fecal microbiome analyses were conducted to investigate the relationship between metabolic profile, gut microbiota composition, and body weight of C57BL/6J mice on chow or a high-fat diet for 8 weeks. PICRUSt analysis of 16S rRNA gene sequences predicted the functional metagenomes of gut bacteria. The results demonstrated that feeding a high-fat diet increased body weight and fasting blood glucose of high-fat diet-induced obesity (DIO) mice and altered the host-microbial co-metabolism and gut microbiota composition. In DIR mice, high-fat diet did not increase body weight while fasting blood glucose was increased significantly compared to chow fed mice. In DIR mice, the urinary metabolic pattern was shifted to a distinct direction compared to DIO mice, which was mainly contributed by xanthine. Moreover, high-fat diet caused gut microbiota dysbiosis in both DIO and DIR mice, but in DIR mice, the abundance of Bifidobacteriaceae, Roseburia, and Escherichia was not affected compared to mice fed a chow diet, which played an important role in the pathway coverage of FormylTHF biosynthesis I. Meanwhile, xanthine and pathway coverage of FormylTHF biosynthesis I showed significant positive correlations with mouse body weight. These findings suggest that gut microbiota-mediated xanthine metabolism correlates with resistance to high-fat DIO.  相似文献   

16.
Inflammatory bowel disease(IBD)has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear.In the past decade,gut microbiota dysbiosis has con-sistently been associated with IBD.Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD,it is often hypothesized that at least some of alteration in microbiome is protective or causative.In this article,we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models.Specifically,we reviewed the potential protective bac-terial pathways and species against IBD,as well as the potential causative bacterial pathways and species of IBD.We also reviewed the potential roles of some members of mycobiome and virome in IBD.Lastly,we covered the current status of therapeutic approaches targeting microbiome,which is a promising strategy to alleviate and cure this inflammatory disease.  相似文献   

17.
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the “helminthome”) provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.  相似文献   

18.
Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent “new Western diet” (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and β-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, β-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.  相似文献   

19.
Dysbiosis, defined as unhealthy shifts in bacterial community composition, can lower the colonization resistance of the gut to intrinsic pathogens. Here, we determined the effect of diet age and type on the health and bacterial community composition of the honeybee (Apis mellifera). We fed newly emerged bees fresh or aged diets, and then recorded host development and bacterial community composition from four distinct regions of the hosts’ digestive tract. Feeding fresh pollen or fresh substitute, we found no difference in host mortality, diet consumption, development or microbial community composition. In contrast, bees fed aged diets suffered impaired development, increased mortality and developed a significantly dysbiotic microbiome. The consumption of aged diets resulted in a significant reduction in the core ileum bacterium Snodgrassella alvi and a corresponding increase in intrinsic pathogen Frischella perrara. Moreover, the relative abundance of S. alvi in the ileum was positively correlated with host survival and development. The inverse was true for both F. perrara and Parasacharibacter apium. Collectively, our findings suggest that the early establishment of S. alvi is associated with healthy nurse development and potentially excludes F. perrara and P. apium from the ileum. Although at low abundance, establishment of the common midgut pathogen Nosema spp. was significantly associated with ileum dysbiosis and associated host deficiencies. Moreover, dysbiosis in the ileum was reflected in the rectum, mouthparts and hypopharyngeal glands, suggesting a systemic host effect. Our findings demonstrate that typically occurring alterations in diet quality play a significant role in colony health and the establishment of a dysbiotic gut microbiome.  相似文献   

20.
Crohn''s disease (CD) is associated with intestinal dysbiosis evidenced by an altered microbiome forming thick biofilms on the epithelium. Additionally, adherent-invasive E. coli (AIEC) strains are frequently isolated from ileal lesions of CD patients indicating a potential role for these strains in disease pathogenesis. The composition and characteristics of the host microbiome are influenced by environmental factors, particularly diet. Polysaccharides added to food as emulsifiers, stabilizers or bulking agents have been linked to bacteria-associated intestinal disorders. The escalating consumption of polysaccharides in Western diets parallels an increased incidence of CD during the latter 20th century. In this study, the effect of a polysaccharide panel on adhesiveness of the CD-associated AIEC strain LF82 was analyzed to determine if these food additives promote disease-associated bacterial phenotypes. Maltodextrin (MDX), a polysaccharide derived from starch hydrolysis, markedly enhanced LF82 specific biofilm formation. Biofilm formation of multiple other E. coli strains was also promoted by MDX. MDX-induced E. coli biofilm formation was independent of polysaccharide chain length indicating a requirement for MDX metabolism. MDX exposure induced type I pili expression, which was required for MDX-enhanced biofilm formation. MDX also increased bacterial adhesion to human intestinal epithelial cell monolayers in a mechanism dependent on type 1 pili and independent of the cellular receptor CEACAM6, suggesting a novel mechanism of epithelial cell adhesion. Analysis of mucosa-associated bacteria from individuals with and without CD showed increased prevalence of malX, a gene essential for MDX metabolism, uniquely in the ileum of CD patients. These findings demonstrate that the ubiquitous dietary component MDX enhances E. coli adhesion and suggests a mechanism by which Western diets rich in specific polysaccharides may promote dysbiosis of gut microbes and contribute to disease susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号