首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sustained contractions of smooth muscle cells (SMC) maintain basal tone in the internal anal sphincter (IAS). To examine the molecular bases for the myogenic tone in the IAS, the present studies focused on the role of RhoA/ROCK in the SMC isolated from the IAS vs. the adjoining phasic tissues of the rectal smooth muscle (RSM) and anococcygeus smooth muscle (ASM) of rat. We also compared cellular distribution of RhoA/ROCK, levels of RhoA-GTP, RhoA-Rho guanine nucleotide dissociation inhibitor (GDI) complex formation, levels of p(Thr696)-MYPT1, and SMC relaxation caused by RhoA inhibition. Levels of RhoA/ROCK were higher at the cell membrane in the IAS SMC compared with those from the RSM and ASM. C3 exoenzyme (RhoA inhibitor) and Y 27632 (ROCK inhibitor) caused a concentration-dependent relaxation of the IAS SMC. In addition, active ROCK-II (primary isoform of ROCK in SMC) caused further shortening in the IAS SMC. C3 exoenzyme increased RhoA-RhoGDI binding and reduced the levels of RhoA-GTP and p(Thr696)-MYPT1. ROCK inhibitor attenuated PKC-induced contractions in IAS SMC. Conversely, a PKC inhibitor (G? 6850, which causes partial relaxation of the SMC) had no significant effect on ROCK-II-induced contractions. Further experiments showed the highest levels of RhoA, active form of RhoA (RhoA-GTP), ROCK-II, 20-kDa myosin regulatory light chain (MLC(20)), phospho-MYPT1, and phospho-MLC(20) in the IAS vs. RSM and ASM SMC. However, the trend was the reverse with the levels of inactive RhoA (GDP-RhoA-RhoGDI complex) and MYPT1. We conclude that RhoA/ROCK play a critical role in maintenance of spontaneous tone in the IAS SMC via inhibition of myosin light chain phosphatase.  相似文献   

2.
Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca(2+), KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and G?-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K(+) depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and G?-6850 (each 10(-5) M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs' SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS.  相似文献   

3.
Studies were performed to determine the unknown status of PKC and RhoA/ROCK in the phorbol 12,13-dibutyrate (PDBu)-stimulated state in the human internal anal sphincter (IAS) smooth muscle cells (SMCs). We determined the effects of PDBu (10(-7) M), the PKC activator, on PKCα and RhoA and ROCK II translocation in the human IAS SMCs. We used immunocytochemistry and fluorescence microcopy in the basal state, following PDBu, and before and after PKC inhibitor calphostin C (10(-6) M), cell-permeable RhoA inhibitor C3 exoenzyme (2.5 μg/ml), and ROCK inhibitor Y 27632 (10(-6) M). We also determined changes in the SMC lengths via computerized digital micrometry. In the basal state PKCα was distributed almost uniformly throughout the cell, whereas RhoA and ROCK II were located in the higher intensities toward the periphery. PDBu caused significant translocation of PKCα, RhoA, and ROCK II. PDBu-induced translocation of PKCα was attenuated by calphostin C and not by C3 exoenzyme and Y 27632. However, PDBu-induced translocation of RhoA was blocked by C3 exoenzyme, and that of ROCK II was attenuated by both C3 exoenzyme and Y 27632. Contraction of the human IAS SMCs caused by PDBu in parallel with RhoA/ROCK II translocation was attenuated by C3 exoenzyme and Y 27632 but not by calphostin C. In human IAS SMCs RhoA/ROCK compared with PKC are constitutively active, and contractility by PDBu is associated with RhoA/ROCK activation rather than PKC. The relative contribution of RhoA/ROCK vs. PKC in the pathophysiology and potential therapy for the IAS dysfunction remains to be determined.  相似文献   

4.
The internal anal sphincter (IAS) tone is important for the rectoanal continence. The RhoA/Rho kinase (ROK) pathway has been associated with the agonist-induced sustained contraction of the smooth muscle, but its role in the spontaneously tonic smooth muscle is not known. Present studies compared expression of different components of the RhoA/ROK pathway between the IAS (a truly tonic SM), the rectal smooth muscle (RSM) (a mixture of phasic and tonic), and anococcygeus smooth muscle (ASM) (a purely phasic SM) of rat. RT-PCR and Western blot analyses were performed to determine RhoA, ROCK-II, CPI-17, MYPT1, and myosin light-chain 20 (MLC20). Phosphorylated CPI-17 at threonine-38 residue (p(Thr38)-CPI-17), MYPT1 at threonine-696 residue (p(Thr696)-MYPT1), and MLC20 at threonine-18/serine-19 residues (p(Thr18/Ser19)-MLC20) were also determined in the basal state and after pretreatment with the ROK inhibitor Y 27632. In addition, we compared the effect of Y 27632 on the basal isometric tension and ROK activity in the IAS vs. the RSM. Our data show the highest levels of RhoA, ROCK-II, CPI-17, MLC20, and of phospho-MYPT1, -CPI-17, and -MLC20 in the IAS followed by in the RSM and ASM. Conversely, MYPT1 levels were lowest in the IAS and highest in the ASM. In the IAS, Y 27632 caused a concentration-dependent decrease in the basal tone, levels of phospho-MYPT1, -CPI-17, and -MLC20, and ROK activity. We conclude that RhoA/ROK plays a critical role in the basal tone in the IAS by the inhibition of MLC phosphatase via the phosphorylation of MYPT1 and CPI-17.  相似文献   

5.
The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.  相似文献   

6.
The role of phospholipase A(2) (PLA(2)) in the genesis of basal tone in the internal anal sphincter (IAS) is not known. We determined the effects of PLA(2) and inhibitors on the basal tone and intraluminal pressures (IASP) in the rat IAS vs. rectal smooth muscles (RSM). In addition, we determined the correlations between the IAS tone, PLA(2) levels, and the actual enzymatic activity. Inhibition of PLA(2) by 4-bromophenacyl bromide (universal inhibitor of PLA(2)) and MJ33 [selective inhibitor of secreted isoform of PLA(2) (sPLA(2))] caused concentration-dependent decrease in the IAS tone and in the IASP. Maximal decreases in the IAS tone and IASP by 4-bromophenacyl bromide and MJ33 were 58.8 +/- 6.9 and 51.5 +/- 6.3%, and 66.7 +/- 5.1 and 79.8 +/- 8.2%, respectively. The sPLA(2) inhibitors were approximately 100 times more potent in decreasing the IASP than the mean blood pressure. Conversely, the selective inhibitors of the cytosolic and calcium-independent PLA(2) arachidonyl trifluoromethyl ketone and bromoenol lactone, respectively, produced no significant effect. The IAS had characteristically higher levels of sPLA(2) activity (26.5 +/- 4.9 micromol.min(-1).ml(-1)) vs. the RSM (3.2 +/- 0.4 micromol.min(-1).ml(-1)), and higher levels of sPLA(2) as shown by Western blot and RT-PCR. Interestingly, administration of sPLA(2) transformed RSM into the tonic smooth muscle like that of the IAS: it developed basal tone and relaxed in response to the electrical field stimulation. From the present data, we conclude that sPLA(2) plays a critical role in the genesis of tone in the IAS. PLA(2) inhibitors may provide potential therapeutic target for treating anorectal motility disorders.  相似文献   

7.
Ras homolog family member A (RhoA) and Rho-associated coiled coil-containing protein kinases 1 and 2 (ROCK1 and 2) are key regulators of focal adhesion, actomyosin contraction and cell motility. RhoA/ROCK signaling has emerged as an attractive target for the development of new cancer therapeutics. Whether RhoA/ROCK is involved in regulating the formation of tumor cell vasculogenic mimicry (VM) is largely unknown. To confirm this hypothesis, we performed in vitro experiments using hepatocellular carcinoma (HCC) cell lines. Firstly, we demonstrated that HCC cells with higher active RhoA/ROCK expression were prone to form VM channels, as compared with RhoA/ROCK low-expressing cells. Furthermore, Y27632 (a specific inhibitor of ROCK) rather than exoenzyme C3 (a specific inhibitor of RhoA) effectively inhibited the formation of tubular network structures in a dose-dependent manner. To elucidate the possible mechanism of ROCK on VM formation, real-time qPCR, western blot and immunofluorescence were used to detect changes of the key VM-related factors, including VE-cadherin, erythropoietin-producing hepatocellular carcinoma-A2 (EphA2), phosphoinositide 3-kinase (PI3K), matrix metalloproteinase (MMP)14, MMP2, MMP9 and laminin 5γ2-chain (LAMC2), and epithelial-mesenchymal-transition (EMT) markers: E-cadherin and Vimentin. The results showed that all the expression profiles were attenuated by blockage of ROCK. In addition, in vitro cell migration and invasion assays showed that Y27632 inhibited the migration and invasion capacity of HCC cell lines in a dose-dependent manner markedly. These data indicate that ROCK is an important mediator in the formation of tumor cell VM, and suggest that ROCK inhibition may prove useful in the treatment of VM in HCC.  相似文献   

8.
The small GTPase, RhoA, and its downstream effecter Rho-kinase (ROK) are reported to be involved in various cellular functions, such as myosin light chain phosphorylation during smooth muscle contraction and exocytosis. Indeed, growing evidence suggests that the RhoA/Rho-kinase pathway plays an important role in regulating exocytosis in these cells. However, it is not known whether the RhoA/Rho-kinase pathway has an effect on catecholamine synthesis. Using the rat pheochromocytoma cell line, PC12, we examined the effects of either Rho-kinase inhibitor (Y27632) or RhoA inhibitor (C3 toxin) on nicotine-induced catecholamine biosynthesis. We show that nicotine (10 microM) induces a significant, though transient, increase in RhoA activation in these cells. Treatment with either Y27632 (1 microM) or C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of tyrosine hydroxylase (TH) mRNA and the corresponding enzyme activity. TH catalyzes the rate-limiting step in the biosynthesis of catecholamine. Y27632 significantly inhibited nicotine-induced phosphorylation of TH at Ser40 as well as Ser19, which are known to be phosphorylated by Ca(2+)/calmodulin kinase II. Furthermore, Y27632 (10 microM) as well as C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of TH at the protein level. Thus, we propose that activation of RhoA, and its downstream effecter Rho-kinase, is a prerequisite for catecholamine biosynthesis in PC12 cells. At the concentrations used in our experiments, Y27632 does not affect cAMP/PKA activity or PKC activity, indicating that the inhibitory effect of Y27632 can be attributed to the inhibition of Rho-kinase activity as observed in chromaffin cells. In contrast, neither Y27632 (10 microM) nor C3 toxin (10 microg/ml) significantly altered catecholamine secretion in PC12 cells. In conclusion, we have demonstrated that inhibition of the Rho/Rho-kinase pathway in chromaffin cells lowers TH activity, probably through CaMKII inhibition. By contrast, neither Y27632 nor C3 toxin affect the secretion of catecholamine.  相似文献   

9.
Migration of epithelial cell sheets, a process involving F-actin restructuring through Rho family GTPases, is both physiologically and pathophysiologically important. Our objective was to clarify the mechanisms whereby the downstream RhoA effector Rho-associated coil-coil-forming kinase (ROCK) influences coordinated epithelial cell motility. Although cells exposed to a pharmacological ROCK inhibitor (Y-27632) exhibited increased spreading in wound closure assays, they failed to migrate in a cohesive manner. Two main phenomena were implicated: the formation of aberrant protrusions at the migrating front and the basal accumulation of F-actin aggregates. Aggregates reflected increased membrane affiliation and detergent insolubility of the actin-binding protein ezrin and enhanced coassociation of ezrin with the membrane protein CD44. While F-actin aggregation following ROCK inhibition was recapitulated by inhibiting myosin light chain (MLC) phosphorylation with the MLC kinase inhibitor ML-7, the latter did not influence protrusiveness and, in fact, significantly decreased cell migration. Our results suggest that excessive protrusiveness downstream of ROCK inhibition reflects an influence of ROCK on F-actin stability via LIM kinase 1 (LIMK-1), which phosphorylates and inactivates cofilin. Y-27632 reduced the levels of both active LIMK-1 and inactive cofilin (phospho forms), and expression of a dominant negative LIMK-1 mutant stimulated leading edge protrusiveness. Furthermore, Y-27632-induced protrusions were partially reversed by overexpression of LIMK-1 to restore cofilin phosphorylation. In summary, our results provide new evidence suggesting that adhesive and protrusive events involved in organized epithelial motility downstream of ROCK are separately coordinated through the phosphorylation of (respectively) MLC and cofilin.  相似文献   

10.
It has been demonstrated that CPI-17 provokes an inhibition of myosin light chain phosphatase to increase myosin light chain phosphorylaton and Ca(2+) sensitivity during contraction of vascular smooth muscle. However, expression and agonist-mediated regulation of CPI-17 in bronchial smooth muscle have not been documented. Thus, expression and phosphorylation of CPI-17 mediated by PKC and ROCK were investigated using rat bronchial preparations. Acetylcholine (ACh)-induced contraction and Ca(2+) sensitization were both attenuated by 10(-6) mol Y-27632 /L, a ROCK inhibitor, 10(-6) mol calphostin C/L, a PKC inhibitor, and their combination. A PKC activator, PDBu, induced a Ca(2+) sensitization in alpha-toxin-permeabilized bronchial smooth muscle. In this case, the Ca(2+) sensitizing effect was significantly inhibited by caphostin C but not by Y-27632. An immunoblot study demonstrated CPI-17 expression in the rat bronchial smooth muscle. Acetylcholine induced a phosphorylation of CPI-17 in a concentration-dependent manner, which was significantly inhibited by Y-27632 and calphostin C. In conclusion, these data suggest that both PKC and ROCK are involved in force development, Ca(2+) sensitization, and CPI-17 phosphorylation induced by ACh stimulation in rat bronchial smooth muscle. As such, RhoA/ROCK, PKC/CPI-17, and RhoA/ROCK/CPI pathways may play important roles in the ACh-induced Ca(2+) sensitization of bronchial smooth muscle contraction.  相似文献   

11.
Kv1.2 is a member of the Shaker family of voltage-sensitive potassium channels and contributes to regulation of membrane excitability. The electrophysiological activity of Kv1.2 undergoes tyrosine kinase-dependent suppression in a process involving RhoA. We report that RhoA elicits suppression of Kv1.2 ionic current by modulating channel endocytosis. This occurs through two distinct pathways, one clathrin-dependent and the other cholesterol-dependent. Activation of Rho kinase (ROCK) via the lysophosphatidic acid (LPA) receptor elicits clathrin-dependent Kv1.2 endocytosis and consequent attenuation of its ionic current. LPA-induced channel endocytosis is blocked by the ROCK inhibitor Y27632 or by clathrin RNA interference. In contrast, steady-state endocytosis of Kv1.2 in unstimulated cells is cholesterol dependent. Inhibition of basal ROCK signaling with Y27632 increased surface Kv1.2, an effect that persists in the presence of clathrin small interfering RNA and that is not additive to the increase in surface channel levels elicited by the cholesterol sequestering drug filipin. Temperature block experiments show that ROCK affects cholesterol-dependent trafficking by modulating the recycling of endocytosed channel back to the plasma membrane. Both receptor-stimulated and steady-state Kv1.2 trafficking modulated by RhoA/ROCK required the activation of dynamin as well as the ROCK effector Lim-kinase, indicating a key role for actin remodeling in RhoA-dependent Kv1.2 regulation.  相似文献   

12.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

13.
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.  相似文献   

14.
Nitric oxide (NO) relaxes the internal anal sphincter (IAS), but its enzymatic source(s) remains unknown; neuronal (nNOS) and endothelial (eNOS) NO synthase (NOS) isoforms could be involved. Also, interstitial cells of Cajal (ICC) may be involved in IAS relaxation. We studied the relative roles of nNOS, eNOS, and c-Kit-expressing ICC for IAS relaxation using genetic murine models. The basal IAS tone and the rectoanal inhibitory reflex (RAIR) were assessed in vivo by a purpose-built solid-state manometric probe and by using wild-type, nNOS-deficient (nNOS-/-), eNOS-deficient (eNOS-/-), and W/W(v) mice (lacking certain c-Kit-expressing ICC) with or without L-arginine or N(omega)-nitro-L-arginine methyl ester (L-NAME) treatment. Moreover, the basal tone and response to electrical field stimulation (EFS) were studied in organ bath using wild-type and mutant IAS. In vivo, the basal tone of eNOS-/- was higher and W/W(v) was lower than wild-type and nNOS-/- mice. L-arginine administered rectally, but not intravenously, decreased the basal tone in wild-type, nNOS-/-, and W/W(v) mice. However, neither L-arginine nor L-NAME affected basal tone in eNOS-/- mice. In vitro, L-arginine decreased basal tone in wild-type and nNOS-/- IAS but not in eNOS-/- or wild-type IAS without mucosa. The in vivo RAIR was intact in wild-type, eNOS-/-, and W/W(v) mice but absent in all nNOS-/- mice. EFS-induced IAS relaxation was also reduced in nNOS-/- IAS. Thus the basal IAS tone is largely controlled by eNOS in the mucosa, whereas the RAIR is controlled by nNOS. c-Kit-expressing ICC may not be essential for the RAIR.  相似文献   

15.
Li B  Zhao WD  Tan ZM  Fang WG  Zhu L  Chen YH 《FEBS letters》2006,580(17):4252-4260
Small cell lung cancer (SCLC) cells migration across human brain microvascular endothelial cells (HBMECs) is an essential step of brain metastases. Here we investigated signalling pathways in HBMECs contributing to the process. Inhibition of endothelial Rho kinase (ROCK) with Y27632 and overexpression of ROCK dominant-negative mutant prevented SCLC cells, NCI-H209, transendothelial migration and the concomitant changes of tight junction. Conversely, inhibition of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) had no effects. Furthermore, endothelial RhoA protein was activated during NCI-H209 cells transendothelial migration. Rho/ROCK participated in NCI-H209 cells transendothelial migration through regulating actin cytoskeleton reorganization. These results suggested that Rho/ROCK was required for SCLC cells transendothelial migration.  相似文献   

16.
The myogenic control mechanisms that govern the basal tone in the internal anal sphincter (IAS) are not known. The present studies determined the autocrine regulation of ANG II in the IAS. The studies were performed in the freshly isolated smooth muscle cells (SMC) of the IAS. We determined the presence of ANG II precursor angiotensinogen (Angen), and the enzymes that convert it into ANG II, using functional, molecular biology, and immunocytochemical studies in rats. ANG II levels in the SMC were determined using ELISA. The IAS SMC generate ANG II at a rate severalfold higher than those from the adjoining smooth muscle of rectum (RSM). RT-PCR data show that IAS exclusively expresses significant higher levels of renin, Angen, and angiotensin-converting enzyme (ACE). These data were confirmed using Western blot analyses and immunocytochemistry. In the IAS SMC, H-77 (10 microM; renin inhibitor) and captopril (1 microM; ACE inhibitor) decreased the basal as well as Angen-increased levels of ANG II. The following functional data corroborate the role of renin-angiotensin system (RAS) in the IAS tone. Angen produced concentration-dependent shortening of the IAS SMC that was inhibited by H-77 and captopril. In addition, H-77 or captopril caused a concentration-dependent fall in the IAS tone vs. nontonic tissues. Basal tone in IAS is partially under the autocrine control of cellular RAS evident by the expression of mRNA coding Angen, renin, and ACE and translation to the respective proteins in the SMC.  相似文献   

17.
18.
The tonic smooth muscles of lower esophageal sphincter (LES) and internal anal sphincter (IAS) are subject to modulation by the neurohumoral agents. We report that angiotensin (Ang) II-induced contraction of rat IAS and LES smooth muscle cells (SMC) was inhibited by Clostridium botulinum C3 exozyme, HA 1077 and Y 27632, suggesting a role for Rho kinase and a Rho-associated kinase (ROK). Ang II-induced contraction of the SMC was also attenuated by genistein, antibodies to the pp60(c-src), p(190) RhoGTPase-activating protein (p190 RhoGAP), carboxyl terminus of Galpha13, carboxyl terminus peptide, and ADP ribosylation factor (ARF) antibody. Ang II-induced increase in p(190) RhoGAP tyrosine phosphorylation was attenuated by genistein. Furthermore, Ang II-induced increase in smooth muscle tone and phosphorylation of myosin light chain (MLC; 20 kDa; MLC20-P) were attenuated by Y 27632 and genistein. The results suggest an important role for Galpha13 and pp60(c-src) in the intracellular events responsible for the activation of RhoA/ROK in Ang II-induced contraction of LES and IAS SMC.  相似文献   

19.
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase critical for both cardiomyocyte survival and sarcomeric assembly during endothelin (ET)-induced cardiomyocyte hypertrophy. ET-induced FAK activation requires upstream activation of one or more isoenzymes of protein kinase C (PKC). Therefore, with the use of replication-defective adenoviruses (Adv) to overexpress constitutively active (ca) and dominant negative (dn) mutants of PKCs, we examined which PKC isoenzymes are necessary for FAK activation and which downstream signaling components are involved. FAK activation was assessed by Western blot analysis with an antibody specific for FAK autophosphorylated at Y397 (Y397pFAK). ET (10 nmol/l; 2-30 min) resulted in the time-dependent activation of FAK which was inhibited by chelerythrine (5 micromol/l; 1 h pretreatment). Adv-caPKC epsilon, but not Adv-caPKC delta, activated FAK compared with a control Adv encoding beta-galactosidase. Conversely, Adv-dnPKC epsilon inhibited ET-induced FAK activation. Y-27632 (10 micromol/l; 1 h pretreatment), an inhibitor of Rho-associated coiled-coil-containing protein kinases (ROCK), prevented ET- and caPKC epsilon-induced FAK activation as well as cofilin phosphorylation. Pretreatment with cytochalasin D (1 micromol/l, 1 h pretreatment) also inhibited ET-induced Y397pFAK and cofilin phosphorylation and caPKC epsilon-induced Y397pFAK. Neither inhibitor, however, interfered with ET-induced ERK1/2 activation. Finally, PP2 (50 micromol/l; 1 h pretreatment), a highly selective Src inhibitor, did not alter basal or ET-induced Y397pFAK. PP2 did, however, reduce basal and ET-induced phosphorylation of other sites on FAK, namely, Y576, Y577, Y861, and Y925. We conclude that the ET-induced signal transduction pathway resulting in downstream Y397pFAK is partially dependent on PKC epsilon, ROCK, cofilin, and assembled actin filaments, but not ERK1/2 or Src.  相似文献   

20.
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho‐associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24–48 h as visualized by phase contrast microscopy. Staining with FITC‐tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号