首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diabetes mellitus is one of the most common non-communicable diseases, and is the fifth leading cause of death in most of the developed countries. It can affect nearly every organ and system in the body and may result in blindness, end stage renal disease, lower extremity amputation and increase risk of stroke, ischaemic heart diseases and peripheral vascular disease. Hyperglycemia in diabetes causes non-enzymatic glycation of free amino groups of proteins (of lysine residues) and leads to their structural and functional changes, resulting in complications of the diabetes. Glycation of proteins starts with formation of Shiff's base, followed by intermolecular rearrangement and conversion into Amadori products. When large amounts of Amadori products are formed, they undergo cross linkage to form a heterogeneous group of protein-bound moieties, termed as advanced glycated end products (AGEs). Rate of these reactions are quite slow and only proteins with large amounts of lysine residues undergo glycation with significant amounts of AGEs. The formation of AGEs is a irreversible process, causing structural and functional changes in protein leading to various complications in diabetes like nephropathy, retinopathy, neuropathy and angiopathy. The present review discusses about role of glycation in various complications of diabetes.  相似文献   

2.
Ahmad S  Moinuddin  Ali A 《Life sciences》2012,90(25-26):980-987
AimsTo study the immunogenicity of advanced glycation end product (AGE) modified IgG (AGE-IgG) in experimental animals.Main methodsHuman IgG was subjected to in vitro glycation with glucose and the formation of Nε-(carboxymethyl)lysine (CML) was evaluated by high performance liquid chromatography (HPLC). The immunogenicity of native and AGE-IgG was investigated by raising polyclonal antibodies against them in rabbits. The induced antibodies were purified on a Protein-A agarose affinity column. Specific binding of antibodies was screened by competitive inhibition assay and band shift assay. Cross reactions of induced antibodies with various proteins or amino acids and their glycated conformers were ascertained by competitive inhibition ELISA.Key findingsWe detected the CML formation in AGE-IgG. The AGE-IgG was found to be highly immunogenic due to the generation of neo-epitopes on it. Affinity purified antibodies exhibited high degree of specific binding with AGE-IgG in comparison to the native IgG. Antibodies against AGE-IgG exhibited diverse antigen binding characteristics and the glycated conformers of various proteins and amino acids were found to be effective inhibitors of antibody-immunogen interaction in cross reaction studies. Band shift assay reiterated the results obtained by direct binding and competitive inhibition assay.SignificanceThe induced antibodies against AGE-IgG resembled the diverse antigen binding characteristics of autoantibodies found in rheumatoid arthritis (RA). IgG modified by AGEs under oxidative stress presents unique neo-epitopes which may be one of the factors for the induction of autoantibodies in RA patients.  相似文献   

3.
Glycation reactions resulting in the generation and accumulation of advanced glycation endproducts (AGEs) are potential mechanisms by which bone protein may be altered in vivo. AGEs accumulate in the bone increasingly with age come into close contact with osteoblasts or osteoclasts. The direct effect of AGEs on bone cells has not been thoroughly investigated. This study aimed to examine whether glycated bovine serum albumin (AGE - BSA) as an AGE modulate the mRNA expression of various genes in primary human osteoblast cultures. The following parameters were included: RAGE (receptor for AGEs), alkaline phosphatase, osteocalcin, osterix and RANKL (receptor activator of nuclear factor-kappaB ligand). Primary human osteoblast cultures were obtained from bone specimens of six patients with osteoarthrosis. Human osteoblasts were treated in AGE - BSA or control-BSA (non-glycated BSA) containing medium (5 mg/ml each) over a time course of seven days. After RT-PCR the mRNA expression was measured by real-time PCR. Related to control - BSA exposure, the mRNA expression of RAGE, RANKL and osterix increased during AGE - BSA treament. For alkaline phosphatase and osteocalcin a tendency of down-regulation was found. In summary, the study presents evidence that advanced glycation end products accumulated in bone alter osteoblasts by activation the AGE - RAGE pathway (RAGE mRNA up-regulation), inducing enhanced osteoclastogenesis (RANKL mRNA up-regulation) and impaired matrix mineralization (down-regulation of alkaline phosphatase and osteocalcin mRNA). Thus, AGEs may play a functional role in the development of bone diseases (e.g. osteoporosis).  相似文献   

4.
Glycation of proteins leading to formation of advanced glycation end products (AGEs) has been considered as one of the important causes of diabetic nephropathy. Therefore, in this study, glycated proteins were detected by anti-AGE antibodies from kidney of streptozotocin-induced diabetic rat showing nephropathic symptoms, by using two dimensional electrophoresis and western blot analysis. These glycated proteins were identified and characterized by using combination of peptide mass finger printing and tandem mass spectrometric approaches. Glycated proteins identified included proteins from metabolic pathways, oxidative stress, cell signaling, and transport. Several of the proteins modified by glycation were involved in glucose metabolism. The extent of glycation was higher in diabetes compared to control, in the glycated proteins that were common to both control and diabetic kidney. Two dimensional electrophoresis proteins profiling of glycated proteins suggest that four of the glycated proteins were significantly up regulated in diabetes.  相似文献   

5.
Advanced Glycation End Products (AGEs) are toxins that are involved in structural and functional alterations of several organs and tissues, resulting in various pathologies. Several types of AGEs have been described but carboxymethyllysine (CML) is the major antigenic AGE compound. In this study, three different immunogenic carrier proteins (KLH, keyhole limpet hemocyanin; BSA, bovine serum albumin; and HSA, human serum albumin) were modified by glycation. The glycated molecules were used to produce epitope-specific monoclonal antibodies able to recognize the CML domain and to detect uremic toxins in the serum of patients with chronic kidney disease (CKD). A competitive ELISA was standardized in order to quantify CML in the sera of CKD patients. An increase in uremic toxins can compromise the clinical condition of these patients, thus, the detection and quantification of these toxins should contribute to a better management and understanding of this disease.  相似文献   

6.
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.  相似文献   

7.
Glycation of proteins, a common postribosomal modification, proceeds via Amadori rearrangement to yield a stable ketoamine linkage of glucose with the protein. Kinetic analysis of the reaction shows that the amount of glycation at steady state is proportional to the glucose concentration, to protein half-life and to the rate of glycation. Thus, when the rate of glycation is determined in vitro and the extent of glycation of a given protein isolated from euglycemic subjects is measured, the half-life may be calculated. As the in vivo situation may not be simulated accurately in vitro, the calculated values may be considered as approximation. When the calculated values were compared with values reported in the literature fairly good agreement was found except for hemoglobin. Studies on stability of glycated albumin show that ketoamine decreases by about 20% when incubated under physiological conditions for 20 days. The method described by us is especially valuable when turnover of proteins in normal and pathophysiological states are compared. The half-life of plasma low-density lipoprotein is longer in patients with hypothyroidism or a high plasma low-density lipoprotein level than in normal subjects. Extending our studies to tissue proteins we did not find a significant increase in half-life of tendon collagen with age. Basement membrane collagen turnover is faster in diabetic patients in bad metabolic control. Thus, the procedure using fructosylamine as endogenous label of protein offers a method of great potential to study the turnover of human body proteins.  相似文献   

8.
糖化是一个重要的蛋白质修饰过程,可能影响治疗性蛋白药物(如单克隆抗体药物)的生物活性及分子稳定性。许多研究表明糖化血红蛋白水平升高与心血管疾病及动脉粥样硬化有着密切关系。人体的血浆蛋白,如白蛋白、球蛋白、纤维蛋白和胶原蛋白也可能被糖化,进而形成AGEs,蛋白药物的生产、储存以及药物在体内循环过程中都可能发生糖化反应。综述了治疗性抗体药物糖化的原因、分析方法,以及糖化对抗体药物生物学功能的影响,以期为临床抗体药物的开发、优化及贮存条件研究提供参考。  相似文献   

9.
Glycation of peptides and proteins is a slow chemical reaction of reducing sugars modifying the amino groups. The first intermediates of this nonenzymatic glycosylation are the Amadori products that can undergo further chemical reactions, finally leading to advanced glycation end products (AGEs). The formation of AGEs was not only linked to aging of tissues and organs in general but also to several diseases such as diabetes mellitus and Alzheimer's disease. Because of the importance of these modifications and their potential use as diagnostic markers, a global postsynthetic approach on solid phase was developed. The peptides were synthesized by Fmoc/(t)Bu-chemistry, with the lysine residue to be modified being protected with the very acid-labile methyltrityl group. Incubation of the peptides with D-glucose in DMF at elevated temperatures resulted in product yields of 35%. Neighboring residues with bulky protecting groups reduced the yields only slightly. The major by-products were the unmodified peptide and an oxidation product. Whereas the unmodified peptide eluted before the glycated peptide, all other by-products eluted later in RP-HPLC, allowing simple purification.  相似文献   

10.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

11.
Advanced glycation end products (AGEs) are a class of complex heterogeneous compounds which accumulate with age and is known to be involved in the pathogenesis of several diseases from diabetes to atherosclerosis. AGEs serve as ligands for multiple receptors including scavenger receptor (SR-A), CD36, and SR-BIota. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays an important role in both atherosclerosis and is found to be an endothelial cell receptor for AGEs. To explore the binding characterization of AGEs to LOX-1, AGEs were prepared by three different reducing sugars (d-glucose, d-fructose, and d-ribose) and the biochemical characterization including, free amino groups, free amine content, fructosamine residues, carbonyl content, fluorescence, and absorbance were determined. The binding activity was determined by FITC labeled AGEs using Chinese hamster ovary-K1 cells stably transfected with human LOX-1 gene. The obtained AGEs showed significant differences in the extent of side chain modifications, carbonyl content, fluorescence, and absorption models. All of the AGEs showed specific and saturable binding to hLOX-1-CHO-K1 cells. Furthermore, dose-dependent binding processes were observed. However, the maximal cellular binding of AGEs differs between the sugars (glucose > ribose > fructose). In addition, oxidized low-density lipoprotein (ox-LDL) could significantly inhibit the binding of AGEs to LOX-1 with different inhibitory efficiency. LOX-1 serves as receptor for AGEs which may give some insight into the role of LOX-1 in the pathogenesis of diabetes and related disorders.  相似文献   

12.
We report a case study of characterization of a non-enzymatically glycated IgG1 using reducing capillary electrophoresis sodium dodecyl sulfate (CE–SDS) and mass spectrometry (MS). Glycation was found to occur nonspecifically at multiple sites in both the light and heavy chains. The glycated light and heavy chains result in wider peaks eluting late in the reducing CE–SDS profile; in particular, the glycated light chain behaved as a shoulder peak detected by either ultraviolet (UV) or laser-induced fluorescence (LIF) signals. The glycated species can be enriched by boronate affinity chromatography. Analyzing the enriched samples by reversed phase high-performance liquid chromatography in line with time-of-flight MS (RP–HPLC–TOF/MS) revealed adducts of +162 and +324 Da to both the light and heavy chains, suggesting the presence of multiple glycation sites. Tryptic peptide mapping and tandem mass sequencing were used to identify two glycation sites on each of the light and heavy chains.  相似文献   

13.
Nonenzymatic glycation, i.e. binding of monosaccharides to amino groups of proteins, gives rise to complex components called "advanced glycation end-products" (AGEs), which alter protein structure and functions, and participate in diabetic long-term complications. Glycation and oxidative stress are closely linked, and are often referred to as "glycoxidation" processes. Experimental data support these interactions. a) All glycation steps generate oxygen free radicals, some of these steps being common with these of lipid peroxidation. b) AGEs bind to membrane receptors such as RAGE, and induce an oxidative stress and a pro-inflammatory status. c) Glycated proteins modulate cellular oxidative functions: glycated collagens induce an inappropriate oxidative response in PMNs. d) Products of lipid peroxidation (MDA) bind to proteins and amplify glycoxidation-induced damages. Glycoxydation intensity increases in diabetes mellitus, ageing, renal failure and other pathological states with oxidative stress. Therapies aiming at limiting glycoxidation take into account its oxidative part.  相似文献   

14.
Advanced glycation end-products (AGEs) have been found to be critically involved in initiation or progression of diabetes secondary complications (nephropathy, retinopathy, neuropathy, and angiopathy). Various hyper-glycating carbonyl compounds such as 3-deoxyglucosone (3-DG) are produced in pathophysiological conditions that form AGEs in high quantity both in vivo and in vitro. In the first stage of this study, we glycated histone H2A protein by 3-DG, and the results showed the formation of various intermediates and AGEs as well as structural changes in the protein. In the second stage, we studied the immunogenicity of native and 3-DG-glycated H2A protein in female rabbits. The modified H2A was highly immunogenic, eliciting high titer immunogen-specific antibodies, while the unmodified form was almost nonimmunogenic. Antibodies against standard carboxymethyllysine (CML) and pentosidine were detected in the immunized female rabbits, which demonstrates the immunogenic nature of AGEs (CML and pentosidine) as well. The results show both structural perturbation and AGEs have the capacity of triggering the immune system due to the generation of neoepitopes that render the molecule immunogenic. This study shows the presence of autoantibodies against 3-DG-modified H2A, CML, and pentosidine in the sera of type 2 diabetes patients having secondary complications. Autoantibodies against damaged H2A and AGEs may be significant in the assessment of initiation/progression of secondary complications in type 2 diabetes mellitus patients or may be used as a marker for early detection of secondary complications in diabetes.  相似文献   

15.
In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.  相似文献   

16.
BackgroundGlycation driven generation of advanced glycation end products (AGEs) and their patho-physiological role in human degenerative diseases has remained one of the thrust areas in the mainstream of disease biology. Glycation of extracellular matrix (ECM) proteins have deleterious effect on the mechanical and functional properties of tissues. Owing to the adverse pathophysiological concerns of glycation, there is a need to decipher the underlying mechanisms.Scope of reviewAGE-modified ECM proteins affect the cell in the vicinity by altering protein structure-function, matrix-matrix or matrix-cell interaction and by activating signalling pathway through receptor for AGE. This review is intended for addressing the AGE-induced modification of tissue-specific ECM proteins and its implication in the pathogenesis of various organ-specific human ailments.Major conclusionsThe glycation affects the canonical cell behaviour due to alteration in the interaction of glycated ECM with receptors like integrins and discodin domain, and the signalling cues generated subsequently affect the downstream signalling pathways. Consequently, the variation of structural and functional properties of tissues due to matrix glycation helps in the initiation or progression of the disease condition.General significanceThis review offers comprehensive knowledge about the remodelling of glycation induced ECM and tissue-specific pathological concerns. As glycation of ECM affects the normal tissues and cell behaviour, the scientific discourse may also provide cues for developing candidate drugs that may help in attenuating the adverse effects of AGEs and perhaps open a research window of tailoring novel strategies for the management of glycation induced human degenerative diseases.  相似文献   

17.
Amino groups of human serum albumin (HSA) can react non-enzymatically with carbonyl groups of reducing sugars to form advanced glycation end products (AGEs). These AGEs contribute to many of the chronic complications of diabetes including atherosclerosis, cataract formation and renal failure. The current study focused on in vitro non-enzymatic reactivity of glyceraldehyde (GA) and methylglyoxal (MG) with HSA and evaluated the rate and extent of AGE formation in the presence of varied concentrations of Zn(II). At normal physiological conditions, GA and MG readily react with HSA. The presence of Zn(II) in HSA-GA or HSA-MG incubation mixtures reduced AGE formation. This finding was confirmed by UV and fluorescence spectrometry, HPLC techniques, and matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF). HPLC studies revealed decreased adduct formation of the glycated protein in the presence of Zn(II). The inhibition of AGE formation was intense at elevated Zn(II) concentrations. The results of this study suggest that Zn(II) may prove to be a potent agent in reducing AGE formation.  相似文献   

18.
The trypsin-kallikrein inhibitor aprotinin was modified with lactose. The influence of reactant concentrations, temperature, reaction time and sodium borohydride on the carbohydrate residue content and the inhibiting activity of glycated aprotinin were studied. Glycation of aprotinin neither shifts the pH optimum of the inhibitor-trypsin association reaction nor does it alter the apparent dissociation constant Ki of the complex measured at pH optimum. Glycation by lactose stabilizes aprotinin against denaturation by increased temperature. The distribution of native and modified aprotinin in rat organs after endocardiac injection was studied. Fixation of glycated aprotinin increases 2.5- to 3-fold in liver and decreases 2-fold in kidneys during the observation time (5 min-2 h) compared to native aprotinin.  相似文献   

19.
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号