首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Mangrove sediments can act as sources of the greenhouse trace gases, nitrous oxide (N(2) O) and methane (CH(4) ). Confident reporting of trace gas emissions from mangrove sediments at local levels is important for regional emissions inventories, since small changes in N(2) O and CH(4) fluxes greatly influence greenhouse gas budgets due to their high global warming potentials. It is also important to identify the drivers of trace gas emission, to prioritize management for minimising emissions. We measured N(2) O and CH(4) fluxes and abiotic sediment parameters at midday low tide in winter and summer seasons, at four sites (27°33'S, 152°59'E) ranging from estuary to ocean sub-tropical mangrove sediments, having varied anthropogenic impacts. At all sites, sediment N(2) O and CH(4) emissions were significantly lower during winter (7-26 μg N(2) O m(-2) · h(-1); 47-466 μg CH(4) m(-2) · h(-1)) compared to summer (28-202 μg N(2) Om(-2) · h(-1); 247-1570 μg CH(4) m(-2) · h(-1)). Sediment temperature, ranging from 18 to 33°C, strongly influenced N(2) O and CH(4) emissions. Highest emissions (202 μg N(2) O m(-2) · h(-1), 1570 μg CH(4) m(-2) · h(-1) ) were detected at human-impacted estuary sites, which generally had higher total carbon (<8%) and total nitrogen (<0.4%) in sediments and reduced salinity (<16 dS · m(-1)). Large between-site variation highlights the need for regular monitoring of sub-tropical mangroves to capture short-lived, episodic N(2) O and CH(4) flux events that are affected by sediment biophysico-chemical conditions at site level. This is important, particularly at sites receiving anthropogenic nutrients, and that have variable freshwater inputs and tidal hydrology.  相似文献   

2.
The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.  相似文献   

3.
In this study, we hypothesized that athletes involved in 5-6 months of sprint-type training would display higher levels of proteins and processes involved in muscle energy supply and utilization. Tissue was sampled from the vastus lateralis of 13 elite ice hockey players (peak oxygen consumption = 51.8 ± 1.3 mL·kg(-1)·min(-1); mean ± standard error) at the end of a season (POST) and compared with samples from 8 controls (peak oxygen consumption = 45.5 ± 1.4 mL·kg(-1)·min(-1)) (CON). Compared with CON, higher activities were observed in POST (p < 0.05) only for succinic dehydrogenase (3.32 ± 0.16 mol·(mg protein)(-1)·min(-1) vs. 4.10 ± 0.11 mol·(mg protein)(-1)·min(-1)) and hexokinase (0.73 ± 0.05 mol·(mg protein)(-1)·min(-1) vs. 0.90 ± 0.05mol·(mg protein)(-1)·min(-1)) but not for phosphorylase, phosphofructokinase, and creatine phosphokinase. No differences were found in Na(+),K(+)-ATPase concentration (β(max): 262 ± 36 pmol·(g wet weight)(-1) vs. 275 ± 27 pmol·(g wet weight)(-1)) and the maximal activity of the sarcoplasmic reticulum Ca(2+)-ATPase (98.1 ± 6.1 μmol·(g protein)(-1)·min(-1) vs. 102 ± 3.3 μmol·(g protein)(-1)·min(-1)). Cross-sectional area was lower (p < 0.05) in POST but only for the type IIA fibres (6312 ± 684 μm(2) vs. 5512 ± 335 μm(2)), while the number of capillary counts per fibre and the capillary to fibre area ratio were generally higher (p < 0.05). These findings suggest that elite trained ice hockey players display elevations only in support of glucose-based aerobic metabolism that occur in the absence of alterations in excitation-contraction processes.  相似文献   

4.
Surface electromyography (EMG) can assess muscle recruitment patterns during cycling, but has limited applicability to studies of deep muscle recruitment and electrically stimulated contractions. We determined whether muscle recruitment timing could be inferred from MRI-measured transverse relaxation time constant (T(2)) changes and a cycle ergometer modified to vary power as a function of pedal angle. Six subjects performed 6 min of single-leg cycling under two conditions (E0°-230° and E90°-230°), which increased the power from 0°-230° and 90-230° of the pedal cycle, respectively. The difference condition produced a virtual power output from 0-180° (V0°-180°). Recruitment was assessed by integrating EMG over the pedal cycle (IEMG) and as the (post-pre) exercise T(2) change (ΔT(2)). For E0°-230°, the mean IEMG for vastus medialis and lateralis (VM/VL; 49.3 ± 3.9 mV·s; mean ± SE) was greater (P < 0.05) than that for E90°-230° (17.9 ± 1.9 mV·s); the corresponding ΔT(2) values were 8.7 ± 1.0 and 1.4 ± 0.5 ms (P < 0.05). For E0°-230° and E90°-230°, the IEMG values for biceps femoris/long head (BF(L)) were 37.7 ± 5.4 and 27.1 ± 5.6 mV·s (P > 0.05); the corresponding ΔT(2) values were 0.9 ± 0.9 and 1.5 ± 0.9 ms (P > 0.05). MRI data indicated activation of the semitendinosus and BF/short head for E0°-230° and E90°-230°. For V0°-180°, ΔT(2) was 7.2 ± 0.9 ms for VM/VL and -0.6 ± 0.6 ms for BF(L); IEMG was 31.5 ± 3.7 mV·s for VM/VL and 10.6 ± 7.0 mV·s for BF(L). MRI and EMG data indicate VM/VL activity from 0 to 180° and selected hamstring activity from 90 to 230°. Combining ΔT(2) measurements with variable loading allows the spatial and temporal patterns of recruitment during cycling to be inferred from MRI data.  相似文献   

5.
Brain extraction of (18)F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) was significantly higher in pentylene tetrazole (PTZ)-treated rats (32 +/- 4%) than controls (25 +/- 4%). The FDG permeability-surface area product (PS) was also significantly higher with PTZ treatment (0.36 +/- 0.05 ml. min(-1). g(-1)) than in controls (0.20 +/- 0.06 ml. min(-1). g(-1)). Cerebral blood flow rates were also elevated by 50% in seizures. The internal carotid artery perfusion technique indicated mean [(14)C]glucose clearance (and extraction) was increased with PTZ treatment, and seizures increased the PS by 37 +/- 16% (P < 0.05) in cortical regions. Because kinetic analyses suggested the glucose transporter half-saturation constant (K(m)) was unchanged by PTZ, we derived estimates of 1) treated and 2) control maximal transporter velocities (V(max)) and 3) a single K(m). In cortex, the glucose transporter V(max) was 42 +/- 11% higher (P < 0.05) in PTZ-treated animals (2.46 +/- 0.34 micromol. min(-1). g(-1)) than in control animals (1.74 +/- 0.26 micromol. min(-1). g(-1)), and the K(m) = 9.5 +/- 1.6 mM. Blood-brain barrier (BBB) V(max) was 31 +/- 10% greater (P < 0.05) in PTZ-treated (2.36 +/- 0. 30 micromol. min(-1). g(-1)) than control subcortex (1.80 +/- 0.25 micromol. min(-1). g(-1)). We conclude acute upregulation of BBB glucose transport occurs within 3 min of an initial seizure. Transporter V(max) and BBB glucose permeability increase by 30-40%.  相似文献   

6.
Cardiopulmonary exercise testing for peak oxygen uptake (Vo(2peak)) can evaluate prognosis in chronic heart failure (CHF) patients, with the peak respiratory exchange ratio (RER(peak)) commonly used to confirm maximal effort and maximal oxygen uptake (Vo(2max)). We determined the precision of RER(peak) in confirming Vo(2max), and whether a novel ramp-incremental (RI) step-exercise (SE) (RISE) test could better determine Vo(2max) in CHF. Male CHF patients (n = 24; NYHA class I-III) performed a symptom-limited RISE-95 cycle ergometer test in the format: RI (4-18 W/min; ~10 min); 5 min recovery (10 W); SE (95% peak RI work rate). Patients (n = 18) then performed RISE-95 tests using slow (3-8 W/min; ~15 min) and fast (10-30 W/min; ~6 min) ramp rates. Pulmonary gas exchange was measured breath-by-breath. Vo(2peak) was compared within patients by unpaired t-test of the highest 12 breaths during RI and SE phases to confirm Vo(2max) and its 95% confidence limits (CI(95)). RER(peak) was significantly influenced by ramp rate (fast, medium, slow: 1.21 ± 0.1 vs. 1.15 ± 0.1 vs. 1.09 ± 0.1; P = 0.001), unlike Vo(2peak) (mean n = 18; 14.4 ± 2.6 ml·kg(-1)·min(-1); P = 0.476). Group Vo(2peak) was similar between RI and SE (n = 24; 14.5 ± 3.0 vs. 14.7 ± 3.1 ml·kg(-1)·min(-1); P = 0.407); however, within-subject comparisons confirmed Vo(2max) in only 14 of 24 patients (CI(95) for Vo(2max) estimation averaged 1.4 ± 0.8 ml·kg(-1)·min(-1)). The RER(peak) in CHF was significantly influenced by ramp rate, suggesting its use to determine maximal effort and Vo(2max) be abandoned. In contrast, the RISE-95 test had high precision for Vo(2max) confirmation with patient-specific CI(95) (without secondary criteria), and showed that Vo(2max) is commonly underestimated in CHF. The RISE-95 test was well tolerated by CHF patients, supporting its use for Vo(2max) confirmation.  相似文献   

7.
The independent influence of peak oxygen uptake (Vo(? peak)) on changes in thermoregulatory responses during exercise in a neutral climate has not been previously isolated because of complex interactions between Vo(? peak), metabolic heat production (H(prod)), body mass, and body surface area (BSA). It was hypothesized that Vo(? peak) does not independently alter changes in core temperature and sweating during exercise. Fourteen males, 7 high (HI) Vo(? peak): 60.1 ± 4.5 ml·kg?1·min?1; 7 low (LO) Vo(? peak): 40.3 ± 2.9 ml·kg?1·min?1 matched for body mass (HI: 78.2 ± 6.1 kg; LO: 78.7 ± 7.1 kg) and BSA (HI: 1.97 ± 0.08 m2; LO: 1.94 ± 0.08 m2), cycled for 60-min at 1) a fixed heat production (FHP trial) and 2) a relative exercise intensity of 60% Vo(? peak) (REL trial) at 24.8 ± 0.6°C, 26 ± 10% RH. In the FHP trial, H(prod) was similar between the HI (542 ± 38 W, 7.0 ± 0.6 W/kg or 275 ± 25 W/m2) and LO (535 ± 39 W, 6.9 ± 0.9 W/kg or 277 ± 29 W/m2) groups, while changes in rectal (T(re): HI: 0.87 ± 0.15°C, LO: 0.87 ± 0.18°C, P = 1.00) and aural canal (T(au): HI: 0.70 ± 0.12°C, LO: 0.74 ± 0.21°C, P = 0.65) temperature, whole-body sweat loss (WBSL) (HI: 434 ± 80 ml, LO: 440 ± 41 ml; P = 0.86), and steady-state local sweating (LSR(back)) (P = 0.40) were all similar despite relative exercise intensity being different (HI: 39.7 ± 4.2%, LO: 57.6 ± 8.0% Vo(2 peak); P = 0.001). At 60% Vo(2 peak), H(prod) was greater in the HI (834 ± 77 W, 10.7 ± 1.3 W/kg or 423 ± 44 W/m2) compared with LO (600 ± 90 W, 7.7 ± 1.4 W/kg or 310 ± 50 W/m2) group (all P < 0.001), as were changes in T(re) (HI: 1.43 ± 0.28°C, LO: 0.89 ± 0.19°C; P = 0.001) and T(au) (HI: 1.11 ± 0.21°C, LO: 0.66 ± 0.14°C; P < 0.001), and WBSL between 0 and 15, 15 and 30, 30 and 45, and 45 and 60 min (all P < 0.01), and LSR(back) (P = 0.02). The absolute esophageal temperature (T(es)) onset for sudomotor activity was ~0.3°C lower (P < 0.05) in the HI group, but the change in T(es) from preexercise values before sweating onset was similar between groups. Sudomotor thermosensitivity during exercise were similar in both FHP (P = 0.22) and REL (P = 0.77) trials. In conclusion, changes in core temperature and sweating during exercise in a neutral climate are determined by H(prod), mass, and BSA, not Vo(? peak).  相似文献   

8.
We investigated the response of Helianthus species nighttime conductance (g(night)) and transpiration (E(night)) to soil nutrient and water limitations in nine greenhouse studies. The studies primarily used wild Helianthus annuus, but also included a commercial and early domesticate of H. annuus and three additional wild species (Helianthus petiolaris Nutt., Helianthus deserticola Heiser, and Helianthus anomalus Blake). Well-watered plants of all species showed substantial g(night) (0.023-0.225 mol m(-2) s(-1)) and E(night) (0.29-2.46 mmol m(-2) s(-1)) measured as instantaneous gas exchange. Based on the potential for transpiration to increase mass flow of mobile nutrients to roots, we hypothesized that g(night) and E(night) would increase under limiting soil nutrients but found no evidence of responses in all six studies testing this. Based on known daytime responses to water limitation, we hypothesized that g(night) and E(night) would decrease when soil water availability was limited, and results from all four studies testing this supported our hypothesis. We also established that stomatal conductance at night was on average 5 times greater than cuticular conductance. Additionally, g(night) and E(night) varied nocturnally and across plant reproductive stages while remaining relatively constant as leaves aged. Our results further the ability to predict conditions under which nighttime water loss will be biologically significant and demonstrate that for Helianthus, g(night) can be regulated.  相似文献   

9.
Latent heat loss of dairy cows in an equatorial semi-arid environment   总被引:1,自引:0,他引:1  
The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous (E(S)) and respiratory (E(R)) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature (T(R)), hair coat surface temperature (T(S)) and respiratory rate (F(R)) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature (T(G)), air temperature (T(A)), wind speed (U), and partial air vapour pressure (P(V)). Data were analysed by mixed models, using the least squares method. Results showed that average E(S) and E(R) were higher in the semi-arid region (117.2 W m(-2) and 44.0 W m(-2), respectively) than in the subtropical region (85.2 W m(-2) and 30.2 W m(-2), respectively). Herds and individual cows were significant effects (P < 0.01) for all traits in the semi-arid region. Body parts did not affect T(S) and E(S) in the subtropical region, but was a significant effect (P < 0.01) in the semi-arid region. The average flank T(S) (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E(S) was higher in the neck (133.3 W m(-2)) than in the flank (116.2 W m(-2)) and hindquarters (98.6 W m(-2)). Coat colour affected significantly both T(S) and E(S) (P < 0.01). Black coats had higher T(S) and E(S) in the semi-arid region (41.7°C and 117.2 W m(-2), respectively) than white coats (37.2°C and 106.7 W m(-2), respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific for semi-arid regions.  相似文献   

10.
The kinetics of biodegradation of TCE in the biofilter packed with wood charcoal and inoculated with diazotrophic bacterial community had been investigated. Use of Michaelis-Menten type model showed that substrate inhibition was present in the system. The kinetic model proposed by Edwards (1970) was used to calculate kinetic parameters-maximum elimination capacity (EC(max)), substrate constant (K(s)), and inhibition constant (K(I)). The model fitted well with the experimental data and the EC(max) was found to be in the range of 10.8-6.1 g/m(3) h. The K(s) values depended upon substrate concentration and ranged from 0.024 to 0.043 g/m(3) indicating the high affinity of diazotrophs for TCE. The K(I) values were low and nearly constant (0.011-0.015 g/m(3)) indicating a moderate substrate inhibition.  相似文献   

11.
The effects of body mass (M) and temperature (T) on routine metabolic rate (m(R) ) were assessed in the largemouth bronze gudgeon Coreius guichenoti, from Three Gorges Reservoir, Yangtze River, China. The m(R) increased with increasing M by factors (b-value in the equation m(R) = aM(b) ) of 0·843, 0·800, 0·767, 0·788 and 0·822 at 10, 15, 20, 25 and 30° C, respectively. A significant interaction between M and T on m(R) was observed. The variation in the b-value at different T suggests that the b-values were not consistent with the universal allometric exponent 0·75. After controlling for M, the relationship between the normalized standard metabolic rate (m(S), mg O(2) kg(-1) h(-1)) and T was described by an exponential equation: m(S) = 9·89e((0·093T)) . The results indicate that the effects of M on m(R) depend on T. The increased water temperature induced by dam construction on the Yangtze River may cause a marked increase in energy demand by this species, with potential ecological consequences.  相似文献   

12.
The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (~4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.  相似文献   

13.
Comparison of mechanical properties of four large, wave-exposed seaweeds   总被引:2,自引:0,他引:2  
Seaweeds have a simple structural design compared to most terrestrial plants. Nonetheless, some species have adapted to the severe mechanical conditions of the surf zone. The material properties of either tissue sections or the whole stipe of four wave-exposed seaweeds, Durvillaea antarctica, D. willana, Laminaria digitata, and L. hyperborea, were tested in tension, bending, and torsion. Durvillaea has a very low modulus of elasticity in tension (E(tension) = 3-7 MN·m(-2)) and in bending (E(bending) = 9-12 MN · m(-2)), torsion modulus (G = 0.3 MN · m(-2)) and strength (σ(b)rk = 1-2 MN · m(-2)), combining a compliable and twistable stipe "material" with a comparatively high breaking strain (ε(brk) = 0.4-0.6). In comparison, the smaller stipes of Laminaria have a higher modulus of elasticity in tension (E(tension) = 6-28 MN·m(-2)) and in bending (E(bending) = 84-109 MN·m(-2)), similar strength (σ(brk) = 1-3 MN·m(-2)), and a higher torsion modulus (G = 0.7-10 MN·m(-2)), combined with a lower breaking strain (ε(brk) = 0.2-0.3) than Durvillaea. Time-dependent, viscoelastic reactions were investigated with cycling tests. The tested species dissipated 42-52% of the loading energy in tension through plastic-viscoelastic processes, a finding that bears important ecological implications. Overall, there seems to be no correlation between single material properties and the size or habitat position of the tested seaweed species.  相似文献   

14.
Toluene removal from waste air using a flat composite membrane bioreactor   总被引:1,自引:0,他引:1  
In this report, gaseous toluene biodegradation results in a flat composite membrane reactor inoculated with Pseudomonas putida TVA8 are presented. Preliminary abiotic experiments showed that transport of toluene through the membrane was linearly and negatively correlated with the gas residence time (tau). During a 339-day biofiltration experiment, the influence of gas residence time (2-24 sec) and mass loading rate (B(v); 10-483 g x m(-3) h(-1)) on the toluene elimination capacity was investigated. A maximum elimination capacity (EC(max)) of 397 g x m(-3) h(-1) was achieved at tau = 24 sec and B(v) = 473 g x m(-3) h(-1). Expressed per unit membrane area, the EC(m,max) was 0.793 g x m(-2) h(-1), which is five times higher than results obtained with other membrane bioreactor experiments in the same range of loading rates. At low gas residence times, reactor performance was limited by mass transfer. Toluene concentration profiles along the membrane were measured for several biotic and abiotic conditions. For inlet concentrations (C(in)) up to 1 g x m(-3), more than 90% was eliminated at 15 cm from the reactor inlet. For C(in) > 1.65 g x m(-3), longer membranes are necessary to obtain these high removal efficiencies.  相似文献   

15.
The main purpose of this study was to assess the validity of the Cosmed Fitmate (FM) for the prediction of maximal oxygen consumption (VO(2)max). In addition, this study examined whether measuring submaximal VO(2), rather than predicting it, can improve upon the prediction of VO(2)max. Participants for the study were 48 young to middle-age adults (32 men, 16 women), with a mean age of 31 yr. Each participant completed a submaximal and maximal treadmill test on 2 separate occasions. During the submaximal test, VO(2)max was predicted using the FM. This device extrapolates the linear regression relating heart rate (HR) and measured VO(2) at submaximal work rates to age-predicted maximum HR (HR = 220 - age). The criterion measure was obtained using a graded, maximal treadmill test, with VO(2) measured by the Douglas bag (DB) method. There was no significant difference between VO(2)max predicted by the FM and VO(2)max measured by the DB method. The results of this study showed that a strong positive correlation (r = 0.897) existed between VO(2)max predicted by the FM and VO(2)max measured by the DB method, with a standard error of the estimate (SEE) = 3.97 ml·kg(-1)·min(-1). There was a significant difference in VO(2)max predicted by the American College of Sports Medicine (ACSM) metabolic equations and VO(2)max measured by the DB method (p = 0.01). The correlation between these variables was r = 0.758 (SEE = 5.26 ml·kg(-1)·min(-1)). These findings indicate that a small, portable, and easy-to-use metabolic system provides valid estimates of VO(2)max, and improves upon predictive accuracy, compared to using generalized ACSM metabolic equations.  相似文献   

16.
17.
The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.  相似文献   

18.
In order to improve the biotechnological production of xylitol, the metabolism of Debaryomyces hansenii NRRL Y-7426 in corncob hemicellulose hydrolyzate has been investigated under different conditions, where either maintenance or growth requirements predominated. For this purpose, the experimental results of two sets of batch bioconversions carried out alternatively varying the starting xylose concentration in the hydrolyzate (65.6 < or = S(0) < or = 154.7 g L(-1)) or the initial biomass level (3.0 < or = X(0) < or = 54.6 g(DM) L(-1)) were used to fit a metabolic model consisting of carbon material and ATP balances based on five main activities, namely fermentative assimilation of pentoses, semi-aerobic pentose-to-pentitol bioconversion, biomass growth on pentoses, catabolic oxidation of pentoses, and acetic acid and NADH regeneration by the electron transport system. Such an approach allowed separately evaluating the main bioenergetic constants of this microbial system, that is, the specific rates of ATP and xylose consumption due to maintenance (m(ATP) = 21.0 mmol(ATP) C-mol(DM) (-1)h(-1); m(Xyl) = 6.5 C-mmol(Xyl) C-mol(DM) (-1)h(-1)) and the true yields of biomass on ATP (Y(ATP) (max) = 0.83 C-mol(DM) mol(ATP) (-1)) and on xylose (Y(Xyl) (max) = 0.93 C-mol(DM) C-mol(Xyl) (-1)). The results of this study highlighted that the system, at very high S(0) and X(0) values, dramatically increased its energy requirements for cell maintenance, owing to the occurrence of stressing conditions. In particular, for S(0) > 130 g L(-1), these activities required an ATP consumption of about 2.1 mol(ATP) L(-1), that is, a value about seven- to eightfold that observed at low substrate concentration. Such a condition led to an increase in the fraction of ATP addressed to cell maintenance from 47% to 81%. On the other hand, the very high percentage of ATP addressed to maintenance (> 96%) at very high cell concentration (X(0) > or = 25 g(DM) L(-1)) was likely due to the insufficient substrate to sustain the growth.  相似文献   

19.
Pseudomonas pseudoalcaligenes POB310 contains genes that encode phenoxybenzoate dioxygenase. The enzyme transforms mono- and dichlorinated phenoxybenzoates to yield protocatechuate that is used as a growth substrate and chlorophenols that are nonmetabolizable. Mass spectral analysis of (18)O metabolites obtained from the protocatechuate 3,4-dioxygenase-deficient mutant, POB310-B1, suggested that the reaction mechanism is a regioselective angular dioxygenation. A cloning vector containing reaction relevant genes (pD30.9) was transferred into Pseudomonas sp. strain B13 containing a modified ortho-cleavage pathway for aromatic compounds. The resultant Pseudomonas sp. strain B13-D5 (pD30.9) completely metabolized 3-(4-chlorophenoxy)benzoate. During growth on 3-phenoxybenzoate, strain B13-D5 (pD30.9) (K(s) = 0.70+/-0.04 mM, mu(max) = 0.45+/-0.03 h(-1), t(d) = 1.5 h, Y = 0.45+/-0.03 g bio- mass x g substrate(-1)) was better adapted to low substrate concentrations, had a faster rate of growth, and a greater yield than POB310 (K(s) = 1.13+/-0.06 mM, mu(max) = 0.31+/-0.02 h(-1), t(d) = 2.2 h, Y = 0.39+/-0.02 g biomass. g substrate(-1)).  相似文献   

20.
We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号