首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells.  相似文献   

2.
Long perfect double-stranded RNA (dsRNA) molecules play a role in various cellular pathways. dsRNA may undergo extensive covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), resulting in conversion of up to 50% of adenosine residues to inosine (I). Alternatively, dsRNA may trigger RNA interference (RNAi), resulting in silencing of the cognate mRNA. These two pathways have previously been shown to be antagonistic. We show a novel interaction between components of the ADAR and RNAi pathways. Tudor staphylococcal nuclease (Tudor-SN) is a subunit of the RNA-induced silencing complex, which is central to the mechanism of RNAi. Here we show that Tudor-SN specifically interacts with and promotes cleavage of model hyper-edited dsRNA substrates containing multiple I.U and U.I pairs. This interaction suggests a novel unsuspected interplay between the two pathways that is more complex than mutual antagonism.  相似文献   

3.
Human Tudor staphylococcal nuclease (Tudor-SN) interacts with the G3BP protein and is recruited into stress granules (SGs), the main type of discrete RNA-containing cytoplasmic foci structure that is formed under stress conditions. Here, we further demonstrate that Tudor-SN binds and co-localizes with AGTR1-3′UTR (3′-untranslated region of angiotensin II receptor, type 1 mRNA) into SG. Tudor-SN plays an important role in the assembly of AGTR1-3′UTR granules. Moreover, endogenous Tudor-SN knockdown can decrease the recovery kinetics of AGTR1-3′UTR granules. Collectively, our data indicate that Tudor-SN modulates the kinetics of AGTR1-3′UTR granule formation, which provides an additional biological role of Tudor-SN in RNA metabolism during stress.  相似文献   

4.
Long double-stranded RNAs (dsRNAs) may undergo covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), whereby up to 50–60% of adenosine residues are converted to inosine. Previously, we have described a ribonuclease activity in various cell extracts that specifically targets dsRNAs hyper-edited by ADARs. Such a ribonuclease may play an important role in viral defense, or may alternatively be involved in down-regulation of other RNA duplexes. Cleavage of hyper-edited dsRNA occurs within sequences containing multiple IU pairs but not in duplexes that contain either isosteric GU pairs or Watson–Crick base pairs. Here, we describe experiments aimed at further characterizing cleavage of hyper-edited dsRNA. Using various inosine-containing dsRNAs we show that cleavage occurs preferentially at a site containing both IU and UI pairs, and that inclusion of even a single GU pair inhibits cleavage. We also show that cleavage occurs on both strands within a single dsRNA molecule and requires a 2′-OH group. Strikingly, we show that ADAR1, ADAR2 or dADAR all preferentially generate the preferred cleavage site when hyper-editing a long dsRNA.  相似文献   

5.
Adenosine deaminases acting on RNA (ADARs) are involved in editing of adenosine residues to inosine in double-stranded RNA (dsRNA). Although this editing recodes and alters functions of several mammalian genes, its most common targets are noncoding repeat sequences, indicating the involvement of this editing system in currently unknown functions other than recoding of protein sequences. Here we show that specific adenosine residues of certain microRNA (miRNA) precursors are edited by ADAR1 and ADAR2. Editing of pri-miR-142, the precursor of miRNA-142, expressed in hematopoietic tissues, resulted in suppression of its processing by Drosha. The edited pri-miR-142 was degraded by Tudor-SN, a component of RISC and also a ribonuclease specific to inosine-containing dsRNAs. Consequently, mature miRNA-142 expression levels increased substantially in ADAR1 null or ADAR2 null mice. Our results demonstrate a new function of RNA editing in the control of miRNA biogenesis.  相似文献   

6.
Following exposure to various stresses (arsenite, UV, hyperthermia, and hypoxia), mRNAs are assembled into large cytoplasmic bodies known as “stress granules,” in which mRNAs and associated proteins may be processed by specific enzymes for different purposes like transient storing, sorting, silencing, or other still unknown processes. To limit mRNA damage during stress, the assembly of micrometric granules has to be rapid, and, indeed, it takes only ∼10–20 min in living cells. However, such a rapid assembly breaks the rules of hindered diffusion in the cytoplasm, which states that large cytoplasmic bodies are almost immobile. In the present work, using HeLa cells and YB-1 protein as a stress granule marker, we studied three hypotheses to understand how cells overcome the limitation of hindered diffusion: shuttling of small messenger ribonucleoprotein particles from small to large stress granules, sliding of messenger ribonucleoprotein particles along microtubules, microtubule-mediated stirring of large stress granules. Our data favor the two last hypotheses and underline that microtubule dynamic instability favors the formation of micrometric stress granules.  相似文献   

7.
The vaccinia virus E3L gene codes for double-stranded RNA (dsRNA) binding proteins which can prevent activation of the dsRNA-dependent, interferon-induced protein kinase PKR. Activated PKR has been shown to induce apoptosis in HeLa cells. HeLa cells infected with vaccinia virus with the E3L gene deleted have also been shown to undergo apoptosis, whereas HeLa cells infected with wild-type vaccinia virus do not. In this report, using virus recombinants expressing mutant E3L products or alternative dsRNA binding proteins, we show that suppression of induction of apoptosis correlates with functional binding of proteins to dsRNA. Infection of HeLa cells with ts23, which leads to synthesis of increased dsRNA at restrictive temperature, induced apoptosis at restrictive but not permissive temperatures. Treatment of cells with cytosine arabinoside, which blocks the late buildup of dsRNA in vaccinia virus-infected cells, prevented induction of apoptosis by vaccinia virus with E3L deleted. Cells transfected with dsRNA in the absence of virus infection also underwent apoptosis. These results suggest that dsRNA is a trigger that can initiate a suicide response in virus-infected and perhaps uninfected cells.  相似文献   

8.
ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR < 0.01) are identified, among which 211 are up- and 159 are down-regulated for at least 1.5-fold (n = 3, p < 0.05). Gene ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.  相似文献   

9.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

10.
Double-stranded (ds) RNA is a key player in numerous biological activities in cells, including RNA interference, anti-viral immunity and mRNA transport. The class of proteins responsible for recognizing dsRNA is termed double-stranded RNA binding proteins (dsRBP). However, little is known about the molecular mechanisms underlying the interaction between dsRBPs and dsRNA. Here we examined four human dsRBPs, ADAD2, TRBP, Staufen 1 and ADAR1 on six dsRNA substrates that vary in length and secondary structure. We combined single molecule pull-down (SiMPull), single molecule protein-induced fluorescence enhancement (smPIFE) and molecular dynamics (MD) simulations to investigate the dsRNA-dsRBP interactions. Our results demonstrate that despite the highly conserved dsRNA binding domains, the dsRBPs exhibit diverse substrate specificities and dynamic properties when in contact with different RNA substrates. While TRBP and ADAR1 have a preference for binding simple duplex RNA, ADAD2 and Staufen1 display higher affinity to highly structured RNA substrates. Upon interaction with RNA substrates, TRBP and Staufen1 exhibit dynamic sliding whereas two deaminases ADAR1 and ADAD2 mostly remain immobile when bound. MD simulations provide a detailed atomic interaction map that is largely consistent with the affinity differences observed experimentally. Collectively, our study highlights the diverse nature of substrate specificity and mobility exhibited by dsRBPs that may be critical for their cellular function.  相似文献   

11.
The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA(Met) (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA(Met) was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.  相似文献   

12.
In eukaryotic cells subjected to environmental stress, untranslated mRNA accumulates in discrete cytoplasmic foci that have been termed stress granules. Recent studies have shown that in addition to mRNA, stress granules also contain 40S ribosomal subunits and various translation initiation factors, including the mRNA binding proteins eIF4E and eIF4G. However, eIF2, the protein that transfers initiator methionyl-tRNA(i) (Met-tRNA(i)) to the 40S ribosomal subunit, has not been detected in stress granules. This result is surprising because the eIF2. GTP. Met-tRNA(i) complex is thought to bind to the 40S ribosomal subunit before the eIF4G. eIF4E. mRNA complex. In the present study, we show in both NIH-3T3 cells and mouse embryo fibroblasts that stress granules contain not only eIF2 but also the guanine nucleotide exchange factor for eIF2, eIF2B. Moreover, we show that phosphorylation of the alpha-subunit of eIF2 is necessary and sufficient for stress granule formation during the unfolded protein response. Finally, we also show that stress granules contain many, if not all, of the components of the 48S preinitiation complex, but not 60S ribosomal subunits, suggesting that they represent stalled translation initiation complexes.  相似文献   

13.
14.
RNA editing that converts adenosine to inosine in double-stranded RNA (dsRNA) is mediated by adenosine deaminases acting on RNA (ADAR). ADAR1 and ADAR2 form respective homodimers, and this association is essential for their enzymatic activities. In this investigation, we set out experiments aiming to determine whether formation of the homodimer complex is mediated by an amino acid interface made through protein-protein interactions of two monomers or via binding of the two subunits to a dsRNA substrate. Point mutations were created in the dsRNA binding domains (dsRBDs) that abolished all RNA binding, as tested for two classes of ADAR ligands, long and short dsRNA. The mutant ADAR dimer complexes were intact, as demonstrated by their ability to co-purify in a sequential affinity-tagged purification and also by their elution at the dimeric fraction position on a size fractionation column. Our results demonstrated ADAR dimerization independent of their binding to dsRNA, establishing the importance of protein-protein interactions for dimer formation. As expected, these mutant ADARs could no longer perform their catalytic function due to the loss in substrate binding. Surprisingly, a chimeric dimer consisting of one RNA binding mutant monomer and a wild type partner still abolished its ability to bind and edit its substrate, indicating that ADAR dimers require two subunits with functional dsRBDs for binding to a dsRNA substrate and then for editing activity to occur.  相似文献   

15.
The RNA-editing enzyme ADAR1 is a double-stranded RNA (dsRNA) binding protein that modifies cellular and viral RNA sequences by adenosine deamination. ADAR1 has been demonstrated to play important roles in embryonic erythropoiesis, viral response, and RNA interference. In human hepatitis virus infection, ADAR1 has been shown to target viral RNA and to suppress viral replication through dsRNA editing. It is not clear whether this antiviral effect of ADAR1 is a common mechanism in response to viral infection. Here, we report a proviral effect of ADAR1 that enhances replication of vesicular stomatitis virus (VSV) through a mechanism independent of dsRNA editing. We demonstrate that ADAR1 interacts with dsRNA-activated protein kinase PKR, inhibits its kinase activity, and suppresses the alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation. Consistent with the inhibitory effect on PKR activation, ADAR1 increases VSV infection in PKR+/+ mouse embryonic fibroblasts; however, no significant effect was found in PKR-/- cells. This proviral effect of ADAR1 requires the N-terminal domains but does not require the deaminase domain. These findings reveal a novel mechanism of ADAR1 that increases host susceptibility to viral infection by inhibiting PKR activation.  相似文献   

16.
17.
The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.  相似文献   

18.
19.
In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号