首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of sequence similarities to the yeast PMR1 and hSPCA gene, the rat alternatively spliced mRNA has been suggested to be a Golgi secretory pathway Ca2+-ATPase (SPCA). Data in this report lend further support for this hypothesis in that sucrose gradient fractionation of rat liver microsomes resulted in SPCA comigrating with the Golgi calcium binding protein CALNUC, which was well resolved from the endoplasmic reticulum marker calreticulin. Also, in PC-12 cells, antibody to SPCA colocalized with an antibody to the Golgi marker -mannosidase II. To study the biological effects of SPCA expression, we performed stable overexpression of SPCA in COS-7 cells. Seven clones were selected for further comparison with COS-7 cells containing an empty expression vector. Overexpression of SPCA resulted in a significant reduction of plasma membrane Ca2+-ATPase, sarco(endo)plasmic reticulum Ca2+-ATPase, and calreticulin expression in these clones. In contrast, the expression of the Golgi calcium-binding protein CALNUC increased significantly. The phosphoenzyme intermediate formed using membranes from clone G11/5 was calcium dependent, significantly more intense than in COS-7 cells, and not affected by La3+ treatment. Calcium uptake by G11/5 microsomes was ATP dependent and significantly greater than in microsomes from parent COS-7 cells. The overexpression of SPCA significantly increased the growth rate of these cells compared with COS-7 cells containing only the empty vector. These data demonstrate that overexpression of the rat SPCA results in significant changes in the expression of calcium transport and storage proteins in COS-7 cells. calcium transport  相似文献   

2.
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.  相似文献   

3.
Human secretory pathway Ca2+/Mn2+-ATPase (SPCA) 2 encoded by ATP2C2 is only expressed in a limited number of tissues, unlike the ubiquitously expressed SPCA1 pump (encoded by ATP2C1, the gene defective in Hailey-Hailey disease). It has not been determined whether there are significant functional differences between SPCA1 and SPCA2 pump enzymes. Therefore, steady-state and transient kinetic approaches were used to characterize the overall and partial reactions of the Ca2+ transport cycle mediated by the human SPCA2 enzyme upon heterologous expression in HEK-293 cells. The catalytic turnover rate of SPCA2 was found enhanced relative to SPCA1 pumps. SPCA2 displayed a very high apparent affinity for cytosolic Ca2+ (K0.5 = 0.025 microm) in activation of the phosphorylation activity but still 2.5-fold lower than that of SPCA1d. Our kinetic analysis traced both differences to the increased rate characterizing the E1 approximately PCa to E2-P transition of SPCA2. Moreover, the reduced rate of the E2 to E1 transition seems to contribute in determining the lower apparent Ca2+ affinity and the increased sensitivity to thapsigargin inhibition, relative to SPCA1d. SPCA2 also displayed a reduced apparent affinity for inorganic phosphate, which could be explained by the observed enhanced rate of the E2-P dephosphorylation. The insensitivity to modulation by pH and K+ concentration of the constitutively enhanced E2-P dephosphorylation of SPCA2 is similar to SPCA1d and possibly represents a novel SPCA-specific feature, which is not shared by sarco(endo)plasmic reticulum Ca2+-ATPases.  相似文献   

4.
Until recently the mechanism for the enrichment of milk with calcium was thought to be almost entirely via the secretory pathway. However, recent studies suggest that a plasma membrane calcium ATPase, PMCA2, is the primary mechanism for calcium transport into milk, highlighting a major role for apical calcium transport. We compared the expression of the recently identified secretory calcium ATPase, SPCA2, and SPCA1, in the mouse mammary gland during development. SPCA2 levels increased over 35-fold during lactation with expression localized to luminal secretory cells, while SPCA1 increased only a modest 2-fold and was expressed throughout the cells of the mammary gland. We also observed major differences in the localization of PMCA2 and PMCA1. Our studies highlight the likely specific roles of PMCA2 and SPCA2 in lactation and indicate that calcium transport into milk is a complex interplay between apical and secretory pathways.  相似文献   

5.
The Ca2+/Mn2+ pumps in the Golgi apparatus   总被引:3,自引:0,他引:3  
Recent evidence highlights the functional importance of the Golgi apparatus as an agonist-sensitive intracellular Ca(2+) store. Besides Ca(2+)-release channels and Ca(2+)-binding proteins, the Golgi complex contains Ca(2+)-uptake mechanisms consisting of the well-known sarco/endoplasmic reticulum Ca(2+)-transport ATPases (SERCA) and the much less characterized secretory-pathway Ca(2+)-transport ATPases (SPCA). SPCA supplies the Golgi compartments and, possibly, the more distal compartments of the secretory pathway with both Ca(2+) and Mn(2+) and, therefore, plays an important role in the cytosolic and intra-Golgi Ca(2+) and Mn(2+) homeostasis. Mutations in the human gene encoding the SPCA1 pump (ATP2C1) resulting in Hailey-Hailey disease, an autosomal dominant skin disorder, are discussed.  相似文献   

6.
Unlike lower eukaryotes, mammalian genomes have a second gene, ATP2C2, encoding a putative member of the family of secretory pathway Ca2+,Mn(2+)-ATPases, SPCA2. Human SPCA2 shares 64% amino acid identity with the protein defective in Hailey Hailey disease, hSPCA1. We show that human SPCA2 (hSPCA2) has a more limited tissue distribution than hSPCA1, with prominent protein expression in brain and testis. In primary neuronal cells, endogenous SPCA2 has a highly punctate distribution that overlaps with vesicles derived from the trans-Golgi network and is thus different from the compact perinuclear distribution of hSPCA1 seen in keratinocytes and nonpolarized cells. Heterologous expression in a yeast strain lacking endogenous Ca2+ pumps reveals further functional differences from hSPCA1. Although the Mn(2+)-specific phenotype of hSPCA2 is similar to that of hSPCA1, Ca2+ ions are transported with much poorer affinity, resulting in only weak complementation of Ca(2+)-specific yeast phenotypes. These observations suggest that SPCA2 may have a more specialized role in mammalian cells, possibly in cellular detoxification of Mn2+ ions, similar to that in yeast. We point to the close links between manganese neurotoxicity and Parkinsonism that would predict an important physiological role for SPCA2 in the brain.  相似文献   

7.
Steady-state and transient kinetic studies were performed to functionally analyze the overall and partial reactions of the Ca(2+) transport cycle of the human secretory pathway Ca(2+)/Mn(2+)-ATPase 1 (SPCA1) isoforms: SPCA1a, SPCA1b, SPCA1c, and SPCA1d (encoded by ATP2C1, the gene defective in Hailey-Hailey disease) upon heterologous expression in mammalian cells. The expression levels of SPCA1 isoforms were 200-350-fold higher than in control cells except for SPCA1c, whose low expression level appears to be the effect of rapid degradation because of protein misfolding. Relative to SERCA1a, the active SPCA1a, SPCA1b, and SPCA1d enzymes displayed extremely high apparent affinities for cytosolic Ca(2+) in activation of the overall ATPase and phosphorylation activities. The maximal turnover rates of the ATPase activity for SPCA1 isoforms were 4.7-6.4-fold lower than that of SERCA1a (lowest for the shortest SPCA1a isoform). The kinetic analysis traced these differences to a decreased rate of the E(1) approximately P(Ca) to E(2)-P transition. The apparent affinity for inorganic phosphate was reduced in the SPCA1 enzymes. This could be accounted for by an enhanced rate of the E(2)-P hydrolysis, which showed constitutive activation, lacking the SERCA1a-specific dependence on pH and K(+).  相似文献   

8.
SPCA1 pumps and Hailey-Hailey disease   总被引:1,自引:0,他引:1  
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.  相似文献   

9.
10.
Accumulation of Ca(2+) into the Golgi apparatus is mediated by sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and by secretory pathway Ca(2+)-ATPases (SPCAs). Mammals and birds express in addition to the housekeeping SPCA1 (human gene name ATP2C1, cytogenetic position 3q22.1) a homologous SPCA2 isoform (human gene name ATP2C2, cytogenetic position 16q24.1). We show here that both genes present an identical exon/intron layout. We confirmed that hSPCA2 has the ability to transport Ca(2+), demonstrated its Mn(2+)-transporting activity, showed its Ca(2+)- and Mn(2+)-dependent phosphoprotein intermediate formation, and documented the insensitivity of these functional activities to thapsigargin inhibition. The mRNA encoding hSPCA2 showed a limited tissue expression pattern mainly confined to the gastrointestinal and respiratory tract, prostate, thyroid, salivary, and mammary glands. Immunocytochemical localization in human colon sections presented a typical apical juxtanuclear Golgi-like staining. The expression in COS-1 cells allowed the direct demonstration of (45)Ca(2+) (K(0.5) = 0.27 microm) or (54)Mn(2+) transport into an A23187-releasable compartment.  相似文献   

11.
1. Secretory pathway Ca(2+) ATPase type 1 (SPCA1) is a newly recognized Ca(2+)/Mn(2+)-transporting pump localized in membranes of the Golgi apparatus. 2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues. 3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains. 4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells. 5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically. 6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, alpha-tubulin or MBP. 7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells. 8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.  相似文献   

12.
ATP is an extracellular signaling molecule that activates specific G protein-coupled P2Y receptors in most cell types to mediate diverse biological effects. ATP has been shown to activate the phospholipase C (PLC)/diacylglycerol/protein kinase C (PKC) pathway in various systems. However, little is known about the signaling events in human endometrial stromal cells (hESCs). The objective of this study was to examine the presence of the P2Y2 receptor and the effects of exogenous ATP on the intracellular mitogen-activated protein kinases (MAPKs) signaling pathway, immediate early genes expression, and cell viability in hESCs. Western blot analysis, gene array analysis, and MTT assay for cell viability were performed. The current study demonstrated the existence of the P2Y2 purinergic receptor in hESCs. UTP and ATP activated MAPK in a dose- and time-dependent manner. Suramin (a P2-purinoceptor antagonist), neomycin (a PLC inhibitor), staurosporin (a PKC inhibitor), and PD98059 (a MEK inhibitor) significantly attenuated the ATP-induced activation of MAPK. ATP activated ERK1/2 and induced translocation of activated ERK1/2 to the nucleus. The gene array for 23 genes associated with members of the mitogenic pathway cascade and immediate early genes revealed that the expression of early growth response 1 was increased. In addition, MTT assay revealed an inhibition effect of ATP on cell viability. ATP activated MAPKs through the P2Y2 purinoceptor/PLC/PKC/ERK signaling pathway and induced translocation of ERK1/2 into the nucleus. Further, ATP induced the expression of early growth response 1 and inhibited cell viability in hESCs.  相似文献   

13.
1. Secretory pathway Ca2+ ATPase type 1 (SPCA1) is a newly recognized Ca2+/Mn2+-transporting pump localized in membranes of the Golgi apparatus.2. The expression level of SPCA1 in brain tissue is relatively high in comparison with other tissues.3. With the aim to determine the expression of SPCA1 within the different types of neural cells, we investigated the distribution of SPCA1 in neuronal, astroglial, oligodendroglial, ependymal, and microglial cell cultures derived from rat brains.4. Western Blot analysis with rabbit anti-SPCA1 antibodies revealed the presence of SPCA1 in homogenates derived from neuronal, astroglial, ependymal, and oligodendroglial, but not from microglial cells.5. Cell cultures that gave rise to positive signal in the immunoblot analysis were also examined immunocytochemically.6. Immunocytochemical double-labeling experiments with anti-SPCA1 serum in combination with antibodies against cell-type specific proteins showed a localization of the SPCA1signal within cells stained positively also for GFAP, α-tubulin or MBP.7. These results definitely established the expression of SPCA1 in astroglial, ependymal, and oligodendroglial cells.8. In addition, the evaluation of neuronal cultures for the presence of SPCA1 revealed an SPCA1-specific immunofluorescence signal in cells identified as neurons.  相似文献   

14.
The number of genes that are up regulated or down regulated during apoptosis is large and still increasing. In an attempt to characterize differential gene expression during serum factor induced apoptosis in AK-5 cells (a rat histiocytoma), we found subunit 6 and subunit 8 of the transmembrane proton channel and subunit alpha of the catalytic core of the mitochondrial F0-F1 ATP synthase complex to be up regulated during apoptosis. The increase in the expression levels of these subunits was concomitant with a transient increase in the intracellular ATP levels, suggesting that the increase in cellular ATP content is a result of the increase in the expression of ATP synthase subunits' gene and de novo protein synthesis. Depleting the cellular ATP levels with oligomycin inhibited apoptosis significantly, pointing to the requirement of ATP during apoptosis. Caspase 1 and caspase 3 activity and the loss of mitochondrial membrane potential were also inhibited by oligomycin during apoptosis in these cells, suggesting that the oligomycin induced inhibition of apoptosis could be due to inhibition of caspase activity and inhibition of mitochondrial depolarization. However, cytochrome C release during apoptosis was found to be completely independent of intracellular ATP content. Besides the ATP synthase complex genes, other mitochondrial genes like cytochrome C oxidase subunit II and III also showed elevated levels of expression during apoptosis. This kind of a mitochondrial gene expression profile suggests that in AK-5 cells, these genes are upregulated in a time-linked manner to ensure sufficient intracellular ATP levels and an efficient functioning of the mitochondrial respiratory chain for successful completion of the apoptotic pathway.  相似文献   

15.
A membrane fraction isolated from lactating murine mammary tissue and enriched for the Golgi membrane marker enzyme galactosyltransferase exhibited Ca2+-stimulated ATPase activity (Ca-ATPase) in 20 microM-free Mg2+ and 10 microM-MgATP, with an apparent Km for Ca2+ of 0.8 microM. Exogenous calmodulin did not enhance Ca2+ stimulation, nor could Ca-ATPase activities be detected in millimolar total Mg2+ and ATP. When assayed with micromolar Mg2+ and MgATP the Ca-ATPases of skeletal-muscle sarcoplasmic reticulum and of calmodulin-enriched red blood cell plasma membranes were half-maximally activated by 0.1 microM- and 0.6 microM-Ca2+ respectively. All three Ca-ATPases were inhibited by similar micromolar concentrations of trifluoperazine, but the Golgi activity was unaffected by quercetin in concentrations which completely inhibited both the sarcoplasmic-reticulum and red-blood-cell enzymes. The results are consistent with the hypothesis that the high-affinity Ca-ATPase is responsible for the ATP-dependent Ca2+ transport exhibited by Golgi-enriched vesicles derived from lactating mammary gland [Neville, Selker, Semple & Watters (1981) J. Membr. Biol. 61, 97-105; West (1981) Biochim. Biophys. Acta 673, 374-386].  相似文献   

16.
17.
Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca2+-ATPases and mammary calcium transport is unknown. We found that 24 h after stopping milk production, PMCA2 and secretory pathway Ca2+-ATPases 1 and 2 (SPCA1 and 2) expression decreased 80-95%. PMCA4 and Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 (SERCA2) expression increased with the loss of PMCA2, SPCA1, and SPCA2 but did not increase until 72-96 h of involution. The rapid loss of these Ca2+-ATPases occurs at a time of high mammary tissue calcium. These results suggest that the abrupt loss of Ca2+-ATPases, required by the mammary gland to regulate the large amount of calcium associated with milk production, could lead to accumulation of cell calcium, mitochondria Ca2+ overload, calcium mediated cell death and thus play a part in early signaling of mammary involution.  相似文献   

18.
Calcium in the Golgi apparatus   总被引:2,自引:0,他引:2  
The secretory-pathway Ca2+-ATPases (SPCAs) represent a recently recognized family of phosphorylation-type ATPases that supply the lumen of the Golgi apparatus with Ca2+ and Mn2+ needed for the normal functioning of this structure. Mutations of the human SPCA1 gene (ATP2C1) cause Hailey-Hailey disease, an autosomal dominant skin disorder in which keratinocytes in the suprabasal layer of the epidermis detach. We will first review the physiology of the SPCAs and then discuss how mutated SPCA1 proteins can lead to an epidermal disorder.  相似文献   

19.
Lipid rafts are often considered as microdomains enriched in sphingomyelin and cholesterol, predominantly residing in the plasma membrane but which originate in earlier compartments of the cellular secretory pathway. Within this pathway, the membranes of the Golgi complex represent a transition stage between the cholesterol-poor membranes of the endoplasmic reticulum (ER) and the cholesterol-rich plasma membrane. The rafts are related to detergent-resistant membranes, which because of their ordered structure are poorly penetrated by cold non-ionic detergents and float in density gradient centrifugation. In this study the microdomain niche of the Golgi-resident SPCA Ca2+/Mn2+ pumps was investigated in HT29 cells by Triton X-100 detergent extraction and density-gradient centrifugation. Similarly to cholesterol and the raft-resident flotillin-2, SPCA1 was found mainly in detergent-resistant fractions, while SERCA3 was detergent-soluble. Furthermore, cholesterol depletion of cells resulted in redistribution of flotillin-2 and SPCA1 to the detergent-soluble fractions of the density gradient. Additionally, the time course of solubilization by Triton X-100 was investigated in live COS-1 and HT29 cells expressing fluorescent SERCA2b, SPCA1d or SPCA2. In both cell types, the ER-resident SERCA2b protein was gradually solubilized, while SPCA1d resisted to detergent solubilization. SPCA2 was more sensitive to detergent extraction than SPCA1d. To investigate the functional impact of cholesterol on SPCA1, ATPase activity was monitored. Depletion of cholesterol inhibited the activity of SPCA1d, while SERCA2b function was not altered. From these results we conclude that SPCA1 is associated with cholesterol-rich domains of HT29 cells and that the cholesterol-rich environment is essential for the functioning of the pump.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号