首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statistical phylogeography   总被引:1,自引:0,他引:1  
While studies of phylogeography and speciation in the past have largely focused on the documentation or detection of significant patterns of population genetic structure, the emerging field of statistical phylogeography aims to infer the history and processes underlying that structure, and to provide objective, rather than ad hoc explanations. Methods for parameter estimation are now commonly used to make inferences about demographic past. Although these approaches are well developed statistically, they typically pay little attention to geographical history. In contrast, methods that seek to reconstruct phylogeographic history are able to consider many alternative geographical scenarios, but are primarily nonstatistical, making inferences about particular biological processes without explicit reference to stochastically derived expectations. We advocate the merging of these two traditions so that statistical phylogeographic methods can provide an accurate representation of the past, consider a diverse array of processes, and yet yield a statistical estimate of that history. We discuss various conceptual issues associated with statistical phylogeographic inferences, considering especially the stochasticity of population genetic processes and assessing the confidence of phylogeographic conclusions. To this end, we present some empirical examples that utilize a statistical phylogeographic approach, and then by contrasting results from a coalescent-based approach to those from Templeton's nested cladistic analysis (NCA), we illustrate the importance of assessing error. Because NCA does not assess error in its inferences about historical processes or contemporary gene flow, we performed a small-scale study using simulated data to examine how our conclusions might be affected by such unconsidered errors. NCA did not identify the processes used to simulate the data, confusing among deterministic processes and the stochastic sorting of gene lineages. There is as yet insufficient justification of NCA's ability to accurately infer or distinguish among alternative processes. We close with a discussion of some unresolved problems of current statistical phylogeographic methods to propose areas in need of future development.  相似文献   

2.
While genome-wide association studies (GWAS) have primarily examined populations of European ancestry, more recent studies often involve additional populations, including admixed populations such as African Americans and Latinos. In admixed populations, linkage disequilibrium (LD) exists both at a fine scale in ancestral populations and at a coarse scale (admixture-LD) due to chromosomal segments of distinct ancestry. Disease association statistics in admixed populations have previously considered SNP association (LD mapping) or admixture association (mapping by admixture-LD), but not both. Here, we introduce a new statistical framework for combining SNP and admixture association in case-control studies, as well as methods for local ancestry-aware imputation. We illustrate the gain in statistical power achieved by these methods by analyzing data of 6,209 unrelated African Americans from the CARe project genotyped on the Affymetrix 6.0 chip, in conjunction with both simulated and real phenotypes, as well as by analyzing the FGFR2 locus using breast cancer GWAS data from 5,761 African-American women. We show that, at typed SNPs, our method yields an 8% increase in statistical power for finding disease risk loci compared to the power achieved by standard methods in case-control studies. At imputed SNPs, we observe an 11% increase in statistical power for mapping disease loci when our local ancestry-aware imputation framework and the new scoring statistic are jointly employed. Finally, we show that our method increases statistical power in regions harboring the causal SNP in the case when the causal SNP is untyped and cannot be imputed. Our methods and our publicly available software are broadly applicable to GWAS in admixed populations.  相似文献   

3.
王钰嫣  王子兴  胡耀达  王蕾  李宁  张彪  韩伟  姜晶梅 《遗传》2017,39(8):707-716
全基因组关联研究(genome-wide association study, GWAS)自2005年首次发表以来已不断增进人们对疾病遗传机制的认识,结合系统生物学并改进统计分析方法是对GWAS数据进行深度挖掘的重要途径。通路分析(pathway analysis)将GWAS所检测的遗传变异根据一定的生物学含义组合为集合进行分析,有利于发现对疾病单独效应小却在通路中相互关联的遗传变异,更有利于进行生物学解释。当前通路分析在GWAS数据上已有较为广泛的应用并取得初步成果。与此同时,通路分析的统计方法仍在不断发展。本文旨在介绍现有直接以SNP为对象的GWAS通路分析算法,根据方法中是否采用核函数分为非核算法和核算法两大类,其中非核算法主要包括基因功能富集分析(gene set enrichment analysis, GSEA)和分层贝叶斯优取(hierarchical Bayes prioritization, HBP),核算法包括线性核(linear kernel, LIN)、状态认证核(identity-by-status kernel, IBS)和尺度不变核(powered exponential kernel)。通过介绍这些方法的计算原理和优缺点,以期为新算法的构建提供更好的思路,为GWAS领域研究方法的选择提供参考。  相似文献   

4.
Progress in genomics and the associated technological, statistical and bioinformatics advances have facilitated the successful implementation of genome-wide association studies (GWAS) towards understanding the genetic basis of common diseases. Infectious diseases contribute significantly to the global burden of disease and there is robust epidemiological evidence that host genetic factors are important determinants of the outcome of interactions between host and pathogen. Indeed, infectious diseases have exerted profound selective pressure on human evolution. However, the application of GWAS to infectious diseases has been relatively limited compared with non-communicable diseases. Here we review GWAS findings for important infectious diseases, including malaria, tuberculosis and HIV. We highlight some of the pitfalls recognized more generally for GWAS, as well as issues specific to infection, including the role of the pathogen which also has a genome. We also discuss the challenges encountered when studying African populations which are genetically more ancient and more diverse that other populations and disproportionately bear the main global burden of serious infectious diseases.  相似文献   

5.
Li J  Guo YF  Pei Y  Deng HW 《PloS one》2012,7(4):e34486
Genotype imputation is often used in the meta-analysis of genome-wide association studies (GWAS), for combining data from different studies and/or genotyping platforms, in order to improve the ability for detecting disease variants with small to moderate effects. However, how genotype imputation affects the performance of the meta-analysis of GWAS is largely unknown. In this study, we investigated the effects of genotype imputation on the performance of meta-analysis through simulations based on empirical data from the Framingham Heart Study. We found that when fix-effects models were used, considerable between-study heterogeneity was detected when causal variants were typed in only some but not all individual studies, resulting in up to ~25% reduction of detection power. For certain situations, the power of the meta-analysis can be even less than that of individual studies. Additional analyses showed that the detection power was slightly improved when between-study heterogeneity was partially controlled through the random-effects model, relative to that of the fixed-effects model. Our study may aid in the planning, data analysis, and interpretation of GWAS meta-analysis results when genotype imputation is necessary.  相似文献   

6.
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t''V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups.  相似文献   

7.
Parkinson's disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p<0.01) from a joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the traditional comparison of one anatomical region between sets of patients and controls, we identified differentially expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles. Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-analysis of the over-represented pathways combined the expression and GWAS results using a Fisher's combined probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling (p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD.  相似文献   

8.
Bayesian methods are widely used in the GWAS meta-analysis. But the considerable consumption in both computing time and memory space poses great challenges for large-scale meta-analyses. In this research, we propose an algorithm named SMetABF to rapidly obtain the optimal ABF in the GWAS meta-analysis, where shotgun stochastic search (SSS) is introduced to improve the Bayesian GWAS meta-analysis framework, MetABF. Simulation studies confirm that SMetABF performs well in both speed and accuracy, compared to exhaustive methods and MCMC. SMetABF is applied to real GWAS datasets to find several essential loci related to Parkinson’s disease (PD) and the results support the underlying relationship between PD and other autoimmune disorders. Developed as an R package and a web tool, SMetABF will become a useful tool to integrate different studies and identify more variants associated with complex traits.  相似文献   

9.
In genome-wide association studies (GWAS), multiple diseases with shared controls is one of the case–control study designs. If data obtained from these studies are appropriately analyzed, this design can have several advantages such as improving statistical power in detecting associations and reducing the time and cost in the data collection process. In this paper, we propose a study design for GWAS which involves multiple diseases but without controls. We also propose corresponding statistical data analysis strategy for GWAS with multiple diseases but no controls. Through a simulation study, we show that the statistical association test with the proposed study design is more powerful than the test with single disease sharing common controls, and it has comparable power to the overall test based on the whole dataset including the controls. We also apply the proposed method to a real GWAS dataset to illustrate the methodologies and the advantages of the proposed design. Some possible limitations of this study design and testing method and their solutions are also discussed. Our findings indicate that the proposed study design and statistical analysis strategy could be more efficient than the usual case–control GWAS as well as those with shared controls.  相似文献   

10.
Massively parallel sequencing (MPS), since its debut in 2005, has transformed the field of genomic studies. These new sequencing technologies have resulted in the successful identification of causal variants for several rare Mendelian disorders. They have also begun to deliver on their promise to explain some of the missing heritability from genome-wide association studies (GWAS) of complex traits. We anticipate a rapidly growing number of MPS-based studies for a diverse range of applications in the near future. One crucial and nearly inevitable step is to detect SNPs and call genotypes at the detected polymorphic sites from the sequencing data. Here, we review statistical methods that have been proposed in the past five years for this purpose. In addition, we discuss emerging issues and future directions related to SNP detection and genotype calling from MPS data.  相似文献   

11.
Maria Masotti  Bin Guo  Baolin Wu 《Biometrics》2019,75(4):1076-1085
Genetic variants associated with disease outcomes can be used to develop personalized treatment. To reach this precision medicine goal, hundreds of large‐scale genome‐wide association studies (GWAS) have been conducted in the past decade to search for promising genetic variants associated with various traits. They have successfully identified tens of thousands of disease‐related variants. However, in total these identified variants explain only part of the variation for most complex traits. There remain many genetic variants with small effect sizes to be discovered, which calls for the development of (a) GWAS with more samples and more comprehensively genotyped variants, for example, the NHLBI Trans‐Omics for Precision Medicine (TOPMed) Program is planning to conduct whole genome sequencing on over 100 000 individuals; and (b) novel and more powerful statistical analysis methods. The current dominating GWAS analysis approach is the “single trait” association test, despite the fact that many GWAS are conducted in deeply phenotyped cohorts including many correlated and well‐characterized outcomes, which can help improve the power to detect novel variants if properly analyzed, as suggested by increasing evidence that pleiotropy, where a genetic variant affects multiple traits, is the norm in genome‐phenome associations. We aim to develop pleiotropy informed powerful association test methods across multiple traits for GWAS. Since it is generally very hard to access individual‐level GWAS phenotype and genotype data for those existing GWAS, due to privacy concerns and various logistical considerations, we develop rigorous statistical methods for pleiotropy informed adaptive multitrait association test methods that need only summary association statistics publicly available from most GWAS. We first develop a pleiotropy test, which has powerful performance for truly pleiotropic variants but is sensitive to the pleiotropy assumption. We then develop a pleiotropy informed adaptive test that has robust and powerful performance under various genetic models. We develop accurate and efficient numerical algorithms to compute the analytical P‐value for the proposed adaptive test without the need of resampling or permutation. We illustrate the performance of proposed methods through application to joint association test of GWAS meta‐analysis summary data for several glycemic traits. Our proposed adaptive test identified several novel loci missed by individual trait based GWAS meta‐analysis. All the proposed methods are implemented in a publicly available R package.  相似文献   

12.
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions (“Flexible cFDR”). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.  相似文献   

13.
Genome-wide association studies of gene-environment interaction (GxE GWAS) are becoming popular. As with main effects GWAS, quantile-quantile plots (QQ-plots) and Genomic Control are being used to assess and correct for population substructure. However, in G x E work these approaches can be seriously misleading, as we illustrate; QQ-plots may give strong indications of substructure when absolutely none is present. Using simulation and theory, we show how and why spurious QQ-plot inflation occurs in G x E GWAS, and how this differs from main-effects analyses. We also explain how simple adjustments to standard regression-based methods used in G x E GWAS can alleviate this problem.  相似文献   

14.
The detrimental effects of the winner’s curse, including overestimation of the genetic effects of associated variants and underestimation of sufficient sample sizes for replication studies are well-recognized in genome-wide association studies (GWAS). These effects can be expected to worsen as the field moves from GWAS into whole genome sequencing. To date, few studies have reported statistical adjustments to the naive estimates, due to the lack of suitable statistical methods and computational tools. We have developed an efficient genome-wide non-parametric method that explicitly accounts for the threshold, ranking, and allele frequency effects in whole genome scans. Here, we implement the method to provide bias-reduced estimates via bootstrap re-sampling (BR-squared) for association studies of both disease status and quantitative traits, and we report the results of applying BR-squared to GWAS of psoriasis and HbA1c. We observed over 50% reduction in the genetic effect size estimation for many associated SNPs. This translates into a greater than fourfold increase in sample size requirements for successful replication studies, which in part explains some of the apparent failures in replicating the original signals. Our analysis suggests that adjusting for the winner’s curse is critical for interpreting findings from whole genome scans and planning replication and meta-GWAS studies, as well as in attempts to translate findings into the clinical setting.  相似文献   

15.
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach.  相似文献   

16.
全基因组关联研究的深度分析策略   总被引:1,自引:1,他引:1  
Quan C  Zhang XJ 《遗传》2011,33(2):100-108
2005年至今,全基因组关联研究(Genome-wide association study,GWAS)发现了大量复杂疾病/性状相关变异。近来,科学家们关注的焦点又集中在了如何利用GWAS数据进行深入分析,期待发现更多复杂疾病/性状的易感基因。一些新的策略和方法已经被尝试应用到复杂疾病/性状GWAS的后续研究中,例如深入分析GWAS数据;鉴定新的复杂疾病/性状易感基因/位点;国际合作和Meta分析;易感区域精细定位及测序;多种疾病共同易感基因研究;以及基因型填补,基于通路的关联分析,基因-基因、基因-环境交互作用和上位研究等。这些策略和方法的应用弥补了经典GWAS的一些不足之处,进一步推动了人类对复杂疾病/性状遗传机制的认识。文章对上述研究的策略、方法以及所面临的问题和挑战进行了综述,为读者描绘了GWAS后期工作的一个简要框架。  相似文献   

17.
Methodological issues in pooled analysis of biomarker studies   总被引:5,自引:0,他引:5  
The number of epidemiological studies involving biological markers has dramatically increased in the last years. These studies are generally small sized and this feature has called attention to the need to summarize the individual results, while waiting for the completion of larger studies, designed to answer questions that have been raised by preliminary studies. We describe here some of the methodological issues related to pooling data of biomarker studies, taking advantage of the experience accumulated by conducting two pooled analyses, one of studies of metabolic gene polymorphisms and cancer, the other on cytogenetic damage. Topics that are considered are: data standardization, population selection and bias, statistical analysis, ethical issues.Pooled analysis seems to provide a relevant improvement over meta-analysis in molecular epidemiology studies, though more research on methodology is needed.  相似文献   

18.
Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance).  相似文献   

19.
全基因组关联分析的进展与反思   总被引:1,自引:0,他引:1  
Tu X  Shi LS  Wang F  Wang Q 《生理科学进展》2010,41(2):87-94
全基因组关联分析(genomewide association study,GWAS)是应用人类基因组中数以百万计的单核苷酸多态性(single nucleotide polymorphism,SNP)为标记进行病例-对照关联分析,以期发现影响复杂性疾病发生的遗传特征的一种新策略。近年来,随着人类基因组计划和基因组单倍体图谱计划的实施,人们已通过GWAS方法发现并鉴定了大量与人类性状或复杂性疾病关联的遗传变异,为进一步了解控制人类复杂性疾病发生的遗传特征提供了重要的线索。然而,由于造成复杂性疾病/性状的因素较多,而且GWAS研究系统较为复杂,因此目前GWAS本身亦存在诸多的问题。本文将从研究方式、研究对象、遗传标记,以及统计分析等方面,探讨GWAS的研究现状以及存在的潜在问题,并展望GWAS今后的发展方向。  相似文献   

20.
Genome-wide association studies (GWAS) have detected many disease associations. However, the reported variants tend to explain small fractions of risk, and there are doubts about issues such as the portability of findings over different ethnic groups or the relative roles of rare versus common variants in the genetic architecture of complex disease. Studying the degree of sharing of disease-associated variants across populations can help in solving these issues. We present a comprehensive survey of GWAS replicability across 28 diseases. Most loci and SNPs discovered in Europeans for these conditions have been extensively replicated using peoples of European and East Asian ancestry, while the replication with individuals of African ancestry is much less common. We found a strong and significant correlation of Odds Ratios across Europeans and East Asians, indicating that underlying causal variants are common and shared between the two ancestries. Moreover, SNPs that failed to replicate in East Asians map into genomic regions where Linkage Disequilibrium patterns differ significantly between populations. Finally, we observed that GWAS with larger sample sizes have detected variants with weaker effects rather than with lower frequencies. Our results indicate that most GWAS results are due to common variants. In addition, the sharing of disease alleles and the high correlation in their effect sizes suggest that most of the underlying causal variants are shared between Europeans and East Asians and that they tend to map close to the associated marker SNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号