首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first morphological sign of vertebrate postcranial body segmentation is the sequential production from posterior paraxial mesoderm of blocks of cells termed somites. Each of these embryonic structures is polarized along the anterior/posterior axis, a subdivision first distinguished by marker gene expression restricted to rostral or caudal territories of forming somites. To better understand the generation of segment polarity in vertebrates, we have studied the zebrafish mutant fused somites (fss), because its paraxial mesoderm lacks segment polarity. Previously examined markers of caudal half-segment identity are widely expressed, whereas markers of rostral identity are either missing or dramatically down-regulated, suggesting that the paraxial mesoderm of the fss mutant embryo is profoundly caudalized. These findings gave rise to a model for the formation of segment polarity in the zebrafish in which caudal is the default identity for paraxial mesoderm, upon which is patterned rostral identity in an fss-dependent manner. In contrast to this scheme, the caudal marker gene ephrinA1 was recently shown to be down-regulated in fss embryos. We now show that notch5, another caudal identity marker and a component of the Delta/Notch signaling system, is not expressed in the paraxial mesoderm of early segmentation stage fss embryos. We use cell transplantation to create genetic mosaics between fss and wild-type embryos in order to assay the requirement for fss function in notch5 expression. In contrast to the expression of rostral markers, which have a cell-autonomous requirement for fss, expression of notch5 is induced in fss cells at short range by nearby wild-type cells, indicating a cell-non-autonomous requirement for fss function in this process. These new data suggest that segment polarity is created in a three-step process in which cells that have assumed a rostral identity must subsequently communicate with their partially caudalized neighbors in order to induce the fully caudalized state.  相似文献   

2.
3.
We report the characterization of a caudal gene from the rhizocephalan cirripede Sacculina carcini and its embryonic and larval expression patterns. Cirripedes are maxillopodan crustaceans that are devoid of any complete abdominal segment at the adult stage. We currently explore the genetic basis of this peculiar body plan. In a previous study we have shown that they probably lack the abdominalA gene, while possessing the other Hox genes shared by arthropods. However, at least a part of the genetic program might be conserved, since the engrailed.a and engrailed.b genes are expressed in a posterior region that we interpret as a relic of an ancestral abdomen. Here we show first that the Sacculina caudal gene is expressed early in embryogenesis, which makes it the earliest genetic marker evidenced in the development of Sacculina and of any other crustacean species. It is expressed later in the embryo in the caudal papilla, a posterior proliferating zone of cells. During the larval stages, the caudal gene is first expressed in the whole thoracic region; then its expression regresses to the posterior end of the larva. Surprisingly, it is never expressed in the vestigial abdomen. This lack of expression of the Sacculina caudal gene in a posterior region, at odds with what is known in all other studied metazoan species, might be correlated with the defective development of the abdomen.  相似文献   

4.
5.
6.
We used Pax-2 mRNA expression and Lim 1/2 antibody staining as markers for the conversion of chick intermediate mesoderm (IM) to pronephric tissue and Lmx-1 mRNA expression as a marker for mesonephros. Pronephric markers were strongly expressed caudal to the fifth somite by stage 9. To determine whether the pronephros was induced by adjacent tissues and, if so, to identify the inducing tissues and the timing of induction, we microsurgically dissected one side of chick embryos developing in culture and then incubated them for up to 3 days. The undisturbed contralateral side served as a control. Most embryos cut parallel to the rostrocaudal axis between the trunk paraxial mesoderm and IM before stage 8 developed a pronephros on the control side only. Embryos manipulated after stage 9 developed pronephric structures on both sides, but the caudal pronephric extension was attenuated on the cut side. These results suggest that a medial signal is required for pronephric development and show that the signal is propagated in a rostral to caudal sequence. In manipulated embryos cultured for 3 days in ovo, the mesonephros as well as the pronephros failed to develop on the experimental side. In contrast, embryos cut between the notochord and the trunk paraxial mesoderm formed pronephric structures on both sides, regardless of the stage at which the operation was performed, indicating that the signal arises from the paraxial mesoderm (PM) and not from axial mesoderm. This cut also served as a control for cuts between the PM and the IM and showed that signaling itself was blocked in the former experiments, not the migration of pronephric or mesonephric precursor cells from the primitive streak. Additional control experiments ruled out the need for signals from lateral plate mesoderm, ectoderm, or endoderm. To determine whether the trunk paraxial mesoderm caudal to the fifth somite maintains its inductive capacity in the absence of contact with more rostral tissue, embryos were transected. Those transected below the prospective level of the fifth somite expressed Pax-2 in both the rostral and the caudal isolates, whereas embryos transected rostral to this level expressed Pax-2 in the caudal isolate only. Thus, a rostral signal is not required to establish the normal pattern of Pax-2 expression and pronephros formation. To determine whether paraxial mesoderm is sufficient for pronephros induction, stage 7 or earlier chick lateral plate mesoderm was cocultured with caudal stage 8 or 9 quail somites in collagen gels. Pax-2 was expressed in chick tissues in 21 of 25 embryos. Isochronic transplantation of stage 4 or 5 quail node into caudal chick primitive streak resulted in the generation of ectopic somites. These somites induced ectopic pronephroi in lateral plate mesoderm, and the IM that received signals from both native and ectopic somites formed enlarged pronephroi with increased Pax-2 expression. We conclude that signals from a localized region of the trunk paraxial mesoderm are both required and sufficient for the induction of the pronephros from the chick IM. Studies to identify the molecular nature of the induction are in progress.  相似文献   

7.
8.
9.
10.
Hoxa13 is expressed early in the caudal mesoderm and endoderm of the developing hindgut. The tissue-specific roles of Hoxa13 function have not been described. Hand-foot-genital syndrome, a rare dominantly inherited human malformation syndrome characterized by distal extremity and genitourinary anomalies, is caused by mutations in the HOXA13 gene. We show evidence that one specific HOXA13 mutation likely acts as a dominant negative in vivo. When chick HFGa13 is overexpressed in the chick caudal endoderm early in development, caudal structural malformations occur. The phenotype is specific to HFGa13 expression in the posterior endoderm, and includes taillessness and severe gut/genitourinary (GGU) malformations. Finally, we show that chick HFGa13 negatively regulates expression of Hoxd13 and antagonizes functions of both endogenous Hoxa13 and Hoxd13 proteins. We suggest a fundamental role for epithelial specific expression of Hoxa13 in the epithelial-mesenchymal interaction necessary for tail growth and posterior GGU patterning.  相似文献   

11.
12.
The posterior nervous system, including the hindbrain and the spinal cord, has been shown to be formed by the transformation of neural plate of anterior character by signals derived from non-axial mesoderm. Although secreted factors, such as fibroblast growth factors (FGFs), Wnts, retinoic acid (RA) and Nodal, have been proposed to be the posteriorizing factors, the mechanism how neural tissue of posterior character is induced and subsequently specified along the anteroposterior axis remains elusive. To identify intercellular signaling molecules responsible for posteriorization of the neural plate as well as to find molecules induced intracellularly by the posteriorizing signal in the caudal neural plate, we screened by in situ hybridization for genes specifically expressed in posterior tissues, including the posterior neural plate and non-axial mesoderm when posteriorization of the neural plate takes place. From a subtracted library differentiating anterior versus posterior neural plate, 420 cDNA clones were tested, out of which 76 cDNA fragments showed expression restricted to the posterior tissue. These clones turned out to represent 32 different genes, including one novel secreted factor and one transmembrane protein. Seven genes were induced by non-axial mesodermal implants and bFGF beads, suggesting that these are among the early-response genes of the posteriorizing signal. Thus, our approach employing cDNA subtraction and subsequent expression pattern screening allows us to clone candidate genes involved in a novel signaling pathway contributing to the formation of the posterior nervous system.  相似文献   

13.
During early stages of normal chick limb development, the homeobox-containing (HOX) gene GHox-4.6 is expressed throughout the posterior mesoderm of the wing bud from which most of the skeletal elements including the digits will develop, whereas GHox-8 is expressed in the anterior limb bud mesoderm which will not give rise to skeletal elements. In the present study, we have examined the expression of GHox-4.6 and GHox-8 in the wing buds of two polydactylous mutant chick embryos, diplopodia-5 and talpid2, from which supernumerary digits develop from anterior limb mesoderm, and have also examined the expression of these genes in response to polarizing zone grafts and retinoic acid-coated bead implants which induce the formation of supernumerary digits from anterior limb mesoderm. We have found that the formation of supernumerary digits from the anterior mesoderm in mutant and experimentally induced polydactylous limb buds is preceded by the ectopic expression of GHox-4.6 in the anterior mesoderm and the coincident suppression of GHox-8 expression in the anterior mesoderm. These observations suggest that the anterior mesoderm of the polydactylous limb buds is "posteriorized" and support the suggestion that GHox-8 and GHox-4.6, respectively, are involved in specifying the anterior non-skeletal and posterior digit-forming regions of the limb bud. Although the anterior mesodermal domain of GHox-8 expression is severely impaired in the mutant and experimentally induced polydactylous limb buds, this gene is expressed by the prolonged, thickened apical ectodermal ridges of the polydactylous limb buds that extend along the distal anterior as well as the distal posterior mesoderm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Epiblast cells adjacent to the regressing primitive streak behave as a stem zone that progressively generates the entire spinal cord and also contributes to paraxial mesoderm. Despite this fundamental task, this cell population is poorly characterised, and the tissue interactions and signalling pathways that specify this unique region are unknown. Fibroblast growth factor (FGF) is implicated but it is unclear whether it is sufficient and/or directly required for stem zone specification. It is also not understood how establishment of the stem zone relates to the acquisition of spinal cord identity as indicated by expression of caudal Hox genes. Here, we show that many cells in the chick stem zone express both early neural and mesodermal genes; however, stem zone-specific gene expression can be induced by signals from underlying paraxial mesoderm without concomitant induction of an ambivalent neural/mesodermal cell state. The stem zone is a site of FGF/MAPK signalling and we show that although FGF alone does not mimic paraxial mesoderm signals, it is directly required in epiblast cells for stem zone specification and maintenance. We further demonstrate that caudal Hox gene expression in the stem zone also depends on FGF and that neither stem zone specification nor caudal Hox gene onset requires retinoid signalling. These findings thus support a two step model for spinal cord generation - FGF-dependent establishment of the stem zone in which progressively more caudal Hox genes are expressed, followed by the retinoid-dependent assignment of spinal cord identity.  相似文献   

15.
The Notch signalling pathway plays essential roles during the specification of the rostral and caudal somite halves and subsequent segmentation of the paraxial mesoderm. We have re-investigated the role of presenilin 1 (Ps1; encoded by Psen1) during segmentation using newly generated alleles of the Psen1 mutation. In Psen1-deficient mice, proteolytic activation of Notch1 was significantly affected and the expression of several genes involved in the Notch signalling pathway was altered, including Delta-like3, Hes5, lunatic fringe (Lfng) and Mesp2. Thus, Ps1-dependent activation of the Notch pathway is essential for caudal half somite development. We observed defects in Notch signalling in both the caudal and rostral region of the presomitic mesoderm. In the caudal presomitic mesoderm, Ps1 was involved in maintaining the amplitude of cyclic activation of the Notch pathway, as represented by significant reduction of Lfng expression in Psen1-deficient mice. In the rostral presomitic mesoderm, rapid downregulation of the Mesp2 expression in the presumptive caudal half somite depends on Ps1 and is a prerequisite for caudal somite half specification. Chimaera analysis between Psen1-deficient and wild-type cells revealed that condensation of the wild-type cells in the caudal half somite was concordant with the formation of segment boundaries, while mutant and wild-type cells intermingled in the presomitic mesoderm. This implies that periodic activation of the Notch pathway in the presomitic mesoderm is still latent to segregate the presumptive rostral and caudal somite. A transient episode of Mesp2 expression might be needed for Notch activation by Ps1 to confer rostral or caudal properties. In summary, we propose that Ps1 is involved in the functional manifestation of the segmentation clock in the presomitic mesoderm.  相似文献   

16.
17.
18.
19.
20.
A carp caudal cDNA of 1.3 kb was cloned after screening an early segmentation stage cDNA library with a probe produced by PCR using conserved homeobox sequences as primers and genomic DNA as template. The homeobox gene was called carp-cdxl. The gene appears highly similar to other vertebrate caudal homologs, especially the zebrafish gene cdx(Zf-cad). The possible relationship to homeobox genes within the Hox-C gene complexes is discussed. A weak expression of the gene, detected by in situ hybridization, was found shortly before gastrulation (at 25% epiboly) in cells likely to have a posterior fate. During gastrulation expression became stronger. At the early segmentation stage, cells of the neural keel in the area of the prospective spinal cord expressed the gene. During the progression of segmentation, expression retracted in a caudal direction. The tailbud expressed the gene throughout, but the somites lost expression shortly after their formation. Only the most lateral mesoderm cells maintained expression in the trunk area. Carp-cdxl was also expressed in the endoderm. At 24 h after fertilization the gene was only expressed in the tailbud. At 48 h, no expression could be detected. The expression pattern suggests a function for carp-cdxl in gastrulation and patterning along the anterior-posterior axis of the embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号