首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Preparations of RNA polymerase (E.C.2.7.7.6) from uninfected Escherichia coli, T4 infected Escherichia coli, and Acinetobacter calcoaceticus when centrifuged in sucrose gradients in the absence of magnesium ions gave rise to five peaks, all of which were able to form polymers from ribonucleoside 5'-triphosphates in the absence of template or primer. All of the peaks obtained from the Escherichia coli enzyme appeared to contain the subunit alpha and beta and, in addition, polypeptides which appeared to be derived from the subunit beta.  相似文献   

7.
8.
The available evidence suggests that during the process of formation of a functional or "open" complex at a promoter, Escherichia coli RNA polymerase transiently realigns the two contacted regions of the promoter, thus stressing the intervening spacer DNA. We tested the possibility that this process plays an active role in the formation of an open complex. Two series of promoters were examined: one with spacer DNAs of 15 to 19 base-pairs and a derivative for which the promoters additionally contained a one-base gap in the spacer, so as to relieve any stress imposed on the DNA. Consistent with an active role for the stressed DNA in driving open complex formation, we have found that for promoters with a 17-base-pair spacer, the presence of a gap leads to a delay in the formation of an open complex, at a step subsequent to the initial binding of RNA polymerase to the promoter. The results with the other gapped promoters rule out direct binding of RNA polymerase to the region of the gap and indicate an increased flexibility in the gapped DNA. As not all observations with the spacer length series of gapped and ungapped promoters can be interpreted in terms of an active role of the spacer DNA without additional assumptions, such a role must still be considered tentative.  相似文献   

9.
10.
SV40 DNA strand selection by Escherichia coli RNA polymerase   总被引:43,自引:0,他引:43  
  相似文献   

11.
12.
13.
14.
A DNA template containing a single ethyl phosphotriester was replicated in vitro by the bacteriophage T4 DNA polymerase and by Escherichia coli DNA polymerase I (DNA pol I). Escherichia coli DNA pol I bypassed the lesion efficiently, but partial inhibition was observed for T4 DNA polymerase. The replication block produced by the ethyl phosphotriester was increased at low dNTP concentrations and for a mutant T4 DNA polymerase with an antimutator phenotype, increased proofreading activity, and reduced ability to bind DNA in the polymerase active center. These observations support a model in which an ethyl phosphotriester impedes primer elongation by T4 DNA polymerase by decreasing formation of the ternary DNA polymerase–DNA–dNTP complex. When primer elongation is not possible, proofreading becomes the favored reaction. Apparent futile cycles of nucleotide incorporation and proofreading, the idling reaction, were observed at the site of the lesion. The replication block was overcome by higher dNTP concentrations. Thus, ethyl phosphotriesters may be tolerated in vivo by the up-regulation of dNTP biosynthesis that occurs during the cellular checkpoint response to blocked DNA replication forks.  相似文献   

15.
In a medium containing 10mM Tris, pH 8, 10 mM MG++, 50 mM K+ and 10 mM NH4, the binding of an E. coli RNA polymerase holoenzyme unwinds the DNA helix by about 240 degrees at 37 degrees C. In this medium the total unwinding of the DNA increases linearly with the molar ratio of polymerase to DNA. The number of binding sites at which unwinding can occur is very large. If the K+ concentration is increased at 200 mM, the enzyme binds to only a limited number of sites, and the bound and free enzyme molecules do not exchange at an appreciable rate. The unwinding angle of the DNA per bound enzyme in this high salt medium is measured to be 140 degrees at 37 degrees C. The total unwinding angle for a fixed number of bound polymerase molecules per DNA is strongly temperature dependent, and decreases with decreasing temperature.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号