首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Tachida H  Mukai T 《Genetics》1985,111(1):43-55
To investigate whether or not an excess of additive genetic variance for viability detected in southern natural populations of Drosophila melanogaster was created by diversifying selection, genotype-environment interaction was tested as follows. (1) Two karyotype chromosomes were used: 61 second chromosomes with the standard karyotype and 63 second chromosomes carrying In(2L)t. Their homozygote viabilities were larger than 50% of the average viability of random heterozygotes. (2) The effects of two factors (culture media and yeasts) were examined at three levels (the culture media: tomato, corn and banana; and the yeasts: sake, brewer's and baker's). The results of 16 three by three factorial experiments by the Cy method in the same karyotype groups for relative viabilities of homozygotes and heterozygotes elucidated the following findings: (1) there was no significant difference between the two karyotype groups, (2) the variance components of genotype-environment interaction were highly significant, (3) the variance component of heterozygotes was significantly smaller than that of homozygotes. From the experimental findings and previous results, diversifying selection in natural populations acting on viability polygenes to increase the additive genetic variance was suggested. The relation of the present result to protein polymorphism is also discussed.  相似文献   

3.
4.
Mukai T  Nagano S 《Genetics》1983,105(1):115-134
About 500 second and 500 third chromosomes were extracted, using the marked inversion technique, from the Orlando-Lake Placid, Florida, population. From the experiments using these chromosomes, the following findings were obtained: (1) The frequencies of lethal-carrying chromosomes were 0.37 in the second and 0.55 in the third chromosomes. (2) The size of the population was estimated to be effectively infinite, on the basis of the allelism rate of lethal-carrying chromosomes. (3) The detrimental and lethal loads for viability were, respectively, 0.40 and 0.45 for the second and 0.52 and 0.78 for the third chromosomes. Consequently, the detrimental to lethal load ratio is 0.90 for the second and 0.67 for the third chromosomes. (4) Lethal genes were shown to be deleterious when heterozygous. (5) The average degree of dominance for mildly deleterious genes (viability polygenes) was estimated to be nearly 0.5, although the confidence interval is large. (6) Additive (sigma( 2) (A)) and dominance (sigma(2) ( D)) variances of viability were estimated by using a partial diallel cross method. The results were (see PDF) and (see PDF) for the second chromosomes. (7) Environmental variances of viability were estimated. The result indicates that the heterozygotes are more homeostatic than the homozygotes. The most striking finding is that the additive variance is larger than expected on the classical hypothesis from the detrimental load. Several possible explanations for the discrepancy are offered. The most likely cause, we suggest, is genotype-environment interaction (diversifying selection) acting on viability polygenes. Overdominance is inconsistent with the low dominance variance, and frequency-dependent selection also appears unlikely as an explanation.  相似文献   

5.
Mukai T  Chigusa SI  Kusakabe S 《Genetics》1982,101(2):279-300
Developmental homeostasis of relative viability was examined for homozygotes and heterozygotes using second chromosomes from two populations of Drosophila melanogaster. One was a chromosome population in which spontaneous mutations were allowed to accumulate since it was begun with a single near-normal second chromosome. The second was a natural population approximately at equilibrium. For the estimation of relative viability, the Cy method was employed (Wallace 1956), and environmental variance between simultaneously replicated cultures was used as the index of developmental homeostasis. A new method was used in the estimation of sampling variance for relative viability that was employed for the calculation of environmental variance (error variance between simultaneously replicated cultures - sampling variance). The following findings were obtained.: (1) The difference in environmental variance between homozygotes and heterozygotes could not be seen when a chromosome population with variation due to new mutations was tested. (2) When a chromosome group isolated from an approximate equilibrium population was examined, heterozygotes manifested a smaller environmental variance than the homozygotes if their relative viabilities were approximately the same. (3) There was a slight negative correlation between viability and environmental variance, although opposite results were found when the viabilities of individuals were high, especially when overdominance (coupling overdominance, Mukai 1969 a, b) was manifest. On the basis of these findings, it was concluded that developmental homeostasis was a product of natural selection, and its mechanism was discussed.  相似文献   

6.
Two large experiments were conducted in order to evaluate the heterozygous effects of irradiated chromosomes on viability. Mutations were accumulated on several hundred second chromosomes by delivering doses of 2,500r over either two or four generations for total X-ray exposures of 5,000r or 10,000r. Chromosomes treated with 5,000r were screened for lethals after the first treatment, and surviving nonlethals were used to generate families of fully treated chromosomes. The members of these families shared the effects of the first irradiation, but differed with respect to those of the second. The chromosomes treated with 10,000r were not grouped into families since mutations were accumulated independently on each chromosome in that experiment. Heterozygous effects on viability of the irradiated chromosomes were tested in both isogenic (homozygous) and nonisogenic (heterozygous) genetic backgrounds. In conjunction with these tests, homozygous viabilities were determined by the marked-inversion technique. This permitted a separation of the irradiated chromosomes into those which were drastic when made homozygous and those which were not. The results indicate that drastic chromosomes have deleterious effects in heterozygous condition, since viability was reduced by 2–4% in tests performed with the 10,000r chromosomes, and by 1% in those involving the 5,000r material. Within a series of tests, the effects were more pronounced when the genetic background was homozygous. Nondrastic irradiated chromosomes did not show detectable heterozygous effects. They also showed no homozygous effects when compared to a sample of untreated controls. In addition, there was no evidence for an induced genetic component of variance with respect to viability in these chromosomes. These results suggest that the mutants induced by high doses of X-rays are principally drastic ones which show deleterious effects on viability in heterozygous condition.  相似文献   

7.
8.
9.
10.
Kusakabe S  Mukai T 《Genetics》1984,108(3):617-632
It has been reported in the previous papers of this series that in the eastern United States and Japan there is a north-to-south cline of additive genetic variance of viability and that the amount of the additive genetic variance in the northern population can be explained by mutation-selection balance. To determine whether or not the difference in the genetic variation in northern and southern populations can be explained by the differences in mutation rate and/or effective population size, numerical calculations were made using population genetic parameters. In addition, the average heterozygosities of the northern and southern populations at ten of 19 polymorphic structural loci surveyed were estimated in relation to the cline of additive genetic variance of viability, and the following findings were obtained. (1) The changes in mutation rate and population size cannot simultaneously explain the difference in additive genetic variance and inbreeding decline between the northern and southern populations. Thus, the operation of some kind of balancing selection, most likely diversifying selection, was suggested to explain the observed excess of additive genetic variance. (2) Estimates of the average heterozygosities of the southern population were not significantly different from those of the northern population. Thus, it was strongly suggested that the excess of additive genetic variance in the southern population cannot be caused by structural loci, but by factors outside the structural loci, and that protein polymorphisms are selectively neutral or nearly neutral.  相似文献   

11.
Ohmi Ohnishi 《Genetics》1977,87(3):547-556
Spontaneous and EMS-induced mutations were accumulated for several generations on the second chromosome of Drosophila melanogaster by keeping this chromosome heterozygous under conditions of minimal natural selection. This article reports studies of heterozygous effects of these mutants.--Both lethal and mildly deleterious mutants have a deleterious heterozygous effect. There was no discernible difference between heterozygotes in which all the mutants were on one chromosome and those where the mutants were distributed over both homologs; thus the coupling-repulsion effect of MUKAI and YAMAZAKI (1964, 1968) is not confirmed. The spontaneous polygenic mutants have a dominance of 0.4 to 0.5, and the same value is found at very low EMS doses. However, the value at higher EMS doses is only about half as high. Since the low doses have a large fraction of spontaneous mutants, the dominance of EMS mutants is less, in the range 0.1 to 0.3, but still larger than for lethals.  相似文献   

12.
Joyce A. Mitchell 《Genetics》1977,87(4):763-774
Drosophila melanogaster X chromosomes were mutagenized by feeding males sucrose solutions containing ethyl methanesulfonate (EMS); the concentrations of EMS in the food were 2.5 mM, 5.0 mM, and 10.0 mM. Chromosomes were exposed to the mutagen up to three times by treating males in succeeding generations. After treatment, the effective exposures were 2.5, 5.0, 7.5, 10.0, 15.0, and 30.0 mM EMS. X chromosomes treated in this manner were tested for effects on fitness in both hemizygous and heterozygous conditions, and for effects on viability in hemizygous and homozygous conditions. In addition, untreated X chromosomes were available for study. The viability and heterozygous fitness effects are presented in this paper, and the hemizygous fitness effects are discussed in the accompanying one (MITCHELL and SIMMONS 1977). Hemizygous and homozygous viability effects were measured by segregation tests in vial cultures. For hemizygous males, viability was reduced 0.5 percent per mM EMS treatment; for homozygous females, it was reduced 0.7% per mM treatment. The decline in viability appeared to be a linear function of EMS dose. The viabilities of males and females were strongly correlated. Heterozygous fitness effects were measured by monitoring changes in the frequencies of treated and untreated X chromosomes in discrete generation populations which, through the use of an X-Y translocation, maintained them only in heterozygous condition. Flies that were heterozygous for a treated chromosome were found to be 0.4% less fit per mM EMS than flies heterozygous for an untreated one.  相似文献   

13.
Six hundred and ninety-one second chromosomes were extracted from a Raleigh, North Carolina population, and the following experimental results were obtained: (1) Salivary gland chromosomes of all lines were observed and the number of inversion-carrying chromosomes was 130, among which 76 carried In(2R)NS, 36 carried In(2L)t, 4 carried In(2L)t and In(2R)NS, and 14 carried different kinds of rare inversions. (2) Viabilities of homozygotes and heterozygotes were examined. The frequency of lethal-carrying chromosomes was 275/691 (or 0.398):70/130 (or 0.538) in inversion-carrying chromosomes and 205/561 (or 0.365) in inversion-free chromosomes. The former is significantly higher than the latter. The average homozygote viability was 0.4342 including lethal lines and 0.7163 excluding those, the average heterozygote viability being 1.0000. The detrimental load to lethal load ratio (D:L ratio) was 0.334/0.501 = 0.67. The average viability of lethal heterozygotes was less than that of lethal-free heterozygotes, significantly in inversion-free individuals but not significantly so in inversion-carrying individuals. Inversion heterozygotes seem to have slightly better viability than the inversion-free heterozygotes on the average, but not significantly so. (3) The average degree of dominance of viability polygenes was estimated to be 0.293 +/- 0.071 for all heterozygotes whose component chromosomes had better viabilities than 0.6 of the average heterozygote viability, 0.177 +/- 0.077 for inversion-free heterozygotes and 0.489 +/- 0.082 for inversion heterozygotes. (4) Mutation rates of viability polygenes and lethal genes were estimated on the basis of genetic loads and average degrees of dominance of lethal genes and viability polygenes. Estimates were very close to those obtained by direct estimation. (5) Possible overdominance and epistasis were detected, but the magnitude must be very small. (6) The effective size of the population was estimated to be much greater than 10,000 by using the allelism rate of lethal-carrying chromosomes (0.0040) and their frequency.-On the basis of these findings and the comparison with the predicted result (Mukai and Maruyama 1971), the mechanisms of the maintenance of genetic variability in the population are discussed.  相似文献   

14.
The Raleigh, North Carolina, population of Drosophila melanogaster was examined for linkage disequilibrium in 1974, several years after previous analyses in 1968, 1969, and 1970. alphaglycerol-3-phosphate dehydrogenase-1 (alphaGpdh-1), malate dehydrogenase-1 (Mdh-1), alcohol dehydrogenase (Adh), and hexokinase-C (Hex-C, tentative name, F. M. Johnson, unpublished; position determined by the present authors to be 2-74.5) were assayed for 617 second chromosomes, and esterase-C (Est-C) and octanol dehydrogenase (Odh) were assayed for 526 third chromosomes. In addition, two polymorphic inversions in the second chromosomes [In(2L)t and In(2R)NS] were examined, and the following findings were obtained: (1) No linkage disequilibrium between isozyme genes was detected. Significant linkage disequilibria were found only between the polymorphic inversions and isozyme genes [In(2L)t vs. Adh, and In(2R)NS vs. Hex-C]. Significant disequilibrium was not detected between In(2L)t and alphaGpdh-1, which is included in the inversion, but a tendency toward disequilibrium was consistently found from 1968 to 1974. The frequency of two-strand double crossovers within inversion In(2L)t involving a single crossover on each side of alphaGpdh-1 was estimated to be 0.00022. Thus, the consistent but not significant linkage disequilibrium between the two factors can be explained by recombination after the inversion occurred. (2) Previously existing linkage disequilibrium between Adh and In(2R)NS (the distance is about 30 cM, but the effective recombination value is about 1.75%) was found to have disappeared. (3) No higher-order linkage disequilibrium was detected. (4) Linkage disequilibrium between Odh and Est-C (the distance of which was estimated to be 0.0058 +/- 0.002) could not be detected (chi(2) (df=1) = 0.9).-From the above results, it was concluded that linkage disequilibria among isozyme genes are very rare in D. melanogaster, so that the Franklin-Lewontin model (Franklin and Lewontin 1970) is not applicable to these genes. The linkage disequilibria between some isozyme genes and polymorphic inversions may be explained by founder effect.  相似文献   

15.
16.
Simmons MJ  Preston CR  Engels WR 《Genetics》1980,95(2):467-475
The relative viabilities and fitnesses of wild-type second chromosomes in heterozygous condition were determined. Joint analysis of these permitted an estimation of a parameter that relates the viability effect of a mutation to its effect on fitness as a whole. For newly arisen mutations, the estimate was slightly greater than one, indicating that the reductions in viability caused by these mutations are associated with reductions in other components of fitness. For mutations from an equilibrium population, the estimate of the parameter was near zero, implying that the deleterious viability effects of these mutations are compensated by improvements in other aspects of fitness.  相似文献   

17.
18.
Seven hundred and three second chromosomes were extracted from a Raleigh, North Carolina population of Drosophila melanogaster in 1970. Additionally, four hundred and eighty-nine third chromosomes were extracted from a large cage population founded from the flies in the 1970 Raleigh collection. The alpha glycerol-3-phosphate dehydrogenase-1, malate dehydrogenase-1, alcohol dehydrogenase, and alpha amylase loci were studied from the second chromosomes, and the esterase-6, esterase-C, and octanol dehydrogenase loci were analyzed from the third chromosomes. Inversions, relative viability and fecundity were studied for both classes of chromosomes. The following significant findings were obtained: (1) All loci examined were polymorphic or had at least two alleles at appreciable frequencies. Analysis of the combined data from this experiment with that of Mukai, Mettler and Chigusa (1971) revealed that the frequencies of the genes in the second chromosomes collected in early August were approximately the same over three years. (2) Linkage disequilibria between and among isozyme genes inter se were not detected except in a few cases which can be considered due to non-random sampling. (3) Linkage disequilibria between isozyme genes and polymorphic inversions were detected when the recombination values between the breakage points of the inversions and the genes in question were small. In only a few cases, were second and third order linkage disequilibria including polymorphic inversions detected. (4) Evidence for either variation among genotypes within loci or cumulative effects of heterozygosity was found for viability and fecundity. As a result of these findings, it was tentatively concluded that although selection might be perceptibly operating on some polymorphic isozyme loci, most of the polymorphic isozyme genes are selectively neutral or near-neutral in the populations studied.  相似文献   

19.
Terumi Mukai 《Genetics》1970,65(2):335-348
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号