首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M S Rao  S C Landis 《Neuron》1990,5(6):899-910
The sympathetic innervation of rat sweat glands undergoes a target-induced switch from a noradrenergic to a cholinergic and peptidergic phenotype during development. Treatment of cultured sympathetic neurons with sweat gland extracts mimics many of the changes seen in vivo. Extracts induce choline acetyltransferase activity and vasoactive intestinal peptide expression in the neurons in a dose-dependent fashion while reducing catecholaminergic properties and neuropeptide Y. The cholinergic differentiation activity appears in developing glands of postnatal day 5 rats and is maintained in adult glands. It is a heat-labile, trypsin-sensitive, acidic protein that does not bind to heparin-agarose. Immunoprecipitation experiments with an antiserum directed against an N-terminal peptide of a cholinergic differentiation factor (CDF/LIF) from heart cells suggest that the sweat gland differentiation factor is not CDF/LIF. The sweat gland activity is a likely candidate for mediating the target-directed change in sympathetic neurotransmitter function observed in vivo.  相似文献   

2.
Landis SC 《Life sciences》1999,64(6-7):381-385
Sweat glands are innervated by sympathetic neurons which undergo a change in transmitter phenotype from noradrenergic to cholinergic during development. As soon as the glands begin to differentiate, M3 muscarinic receptor mRNA and binding sites are detectable. Receptor expression appears in the absence of innervation and is maintained after denervation. While receptor expression is not regulated by innervation, secretory responsiveness is. Muscarinic blockade during development or in adult animals results in the loss of responsiveness and its reappearance requires several days. Cholinergic muscarinic activation is most likely to regulate one or more steps in the signalling cascade that are downstream of calcium mobilization. The anterograde regulation of sweat gland responsiveness is one facet of the reciprocal interactions are required to establish a functional synapse in this system.  相似文献   

3.
The neurotransmitter properties of the sympathetic innervation of sweat glands in rat footpads have previously been shown to undergo a striking change during development. When axons first reach the developing glands, they contain catecholamine histofluorescence and immunoreactivity for catecholamine synthetic enzymes. As the glands and their innervation mature, catecholamines disappear and cholinergic and peptidergic properties appear. Final maturation of the sweat glands, assayed by secretory competence, is correlated temporally with the development of cholinergic function in the innervation. To determine if the neurotransmitter phenotype of sympathetic neurons developing in vivo is plastic, if sympathetic targets can play a role in determining neurotransmitter properties of the neurons which innervate them, and if gland maturation is dependent upon its innervation, the normal developmental interaction between sweat glands and their innervation was disrupted. This was accomplished by a single injection of 6-hydroxy-dopamine (6-OHDA) on Postnatal Day 2. Following this treatment, the arrival of noradrenergic sympathetic axons at the developing glands was delayed 7 to 10 days. Like the gland innervation of normal rats, the axons which innervated the sweat glands of 6-OHDA-treated animals acquired cholinergic function and their expression of endogenous catecholamines declined. The change in neurotransmitter properties, however, occurred later in development than in untreated animals and was not always complete. Even in adult animals, some fibers continued to express endogenous catecholamines and many nerve terminals contained a small proportion of small granular vesicles after permanganate fixation. The gland innervation in the 6-OHDA-treated animals also differed from that of normal rats in that immunoreactivity for VIP was not expressed in the majority of glands. It seems likely that following treatment with 6-OHDA sweat glands were innervated both by neurons that would normally have done so and by neurons that would normally have innervated other, noradrenergic targets in the footpads, such as blood vessels. Contact with sweat glands, therefore, appears to suppress noradrenergic function and induce cholinergic function not only in the neurons which normally innervate the glands but also in neurons which ordinarily innervate other targets. Effects of delayed innervation were also observed on target development. The appearance of sensitivity to cholinergic agonists by the sweat glands was coupled with the onset of cholinergic transmission.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
While the majority of sympathetic neurons are noradrenergic, a minority population are cholinergic. At least one population of cholinergic sympathetic neurons arises during development by a target-dependent conversion from an initial noradrenergic phenotype. Evidence for retrograde specification has been obtained from transplantation studies in which sympathetic neurons that normally express a noradrenergic phenotype throughout life were induced to innervate sweat glands, a target normally innervated by cholinergic sympathetic neurons. This was accomplished by transplanting footpad skin containing sweat gland primordia from early postnatal donor rats to the hairy skin region of host rats. The sympathetic neurons innervating the novel target decreased their expression of noradrenergif traints and developed choline acetyltransferase (ChAT) activity. In addition, many sweat gland-associated fibers acquired acetylcholinesterase (AChE) staining and VIP immunoreactivity. These studies indicated that sympathetic neurons in vivo alter their neurotransmitter phenotype in response to novel envronmental signals and that sweat glands play a critical role in the cholinergic and peptidergic differentiation of the sympathetic neurons that innervate them. The sweat gland-derived cholinergic differentiation factor is distinct from leukemia inhibitory factor and ciliary neurotrophic factor, two well-characterized cytokines that alter the neurotransmitter properties of cultured sympathetic neurons in a similar fashion. Recent studies indicate that anterograde signalling is also important for the establishment of functional synapses in this system. We have found that the production of cholinergic differentiation activity by sweat glands required sympathetic innervation, and the acquisition and maintenance of secretory competence by sweat glands depends upon functional cholinergic innervation. 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
Previous studies of the cholinergic sympathetic innervation of rat sweat glands provide evidence for a change in neurotransmitter phenotype from noradrenergic to cholinergic during development. To define further the developmental history of cholinergic sympathetic neurons, we have used immunocytochemical techniques to examine developing and mature sweat gland innervation for the presence of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) and for two neuropeptides present in the mature cholinergic innervation, vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP). In 7-day old animals, intensely TH- and DBH-immunoreactive axons were closely associated with the forming glands. The intensity of both the TH and DBH immunofluorescence decreased as the glands and their innervation developed. Neither TH-IR nor DBH-IR disappeared entirely; faint immunoreactivity for both enzymes was reproducibly detected in mature animals. In contrast to noradrenergic properties, the expression of peptide immunoreactivities appeared relatively late. No VIP-IR or CGRP-IR was detectable in the sweat gland innervation at 4 or 7 days. In some glands VIP-IR first appeared in axons at 10 days, and was evident in all glands by 14 days. CGRP-IR was detectable only after 14 days. In addition to VIP-IR and CGRP-IR, we examined the sweat gland innervation for several neuropeptides which have been described in noradrenergic sympathetic neurons including neuropeptide Y, somatostatin, substance P, and leu- and met-enkephalin; these peptides were not evident in either developing or mature sweat gland axons. Our observations provide further evidence for the early expression and subsequent modulation of noradrenergic properties in a population of cholinergic sympathetic neurons in vivo. In addition, the asynchronous appearance during development of the two neuropeptide immunoreactivities raises the possibility that the expression of peptide phenotypes may be controlled independently.  相似文献   

7.
The effect of the parasympathetic nerve supply on the development of the parotid gland in the immature lamb and its maintenance in the adult sheep has been investigated by unilateral postganglionic denervation. Seventy-seven to ninety-three days after denervation secretory activity of the gland was examined and material taken for histological examination. The adult denervated glands secreted at lower rates than the innervated and their atropine-resistant secretory flow was reduced to as low as one fifth of that of the innervated glands. In two lambs an atropine-resistant flow did not develop in the denervated glands: in another two, flows of saliva from the denervated glands were present but were much less than in the contralateral innervated glands. After denervation glands were, with one exception, smaller than the contralateral innervated glands. The acinar cells of the denervated adult and lamb glands were smaller than the cells of the innervated glands but similar in size to those of 7-14 day old unoperated control lambs. Acinar cells in denervated glands had periodic acid Schiff staining material but the staining reaction to pyronin-methyl green was similar in the innervated and denervated. The results indicate that the integrity of the parasympathetic innervation is essential for the development of the parotid gland of the sheep and for its maintenance in the adult animal.  相似文献   

8.
Aquaporin-5 (AQP5) is a water channel protein and is considered to play an important role in water movement across the plasma membrane. We raised anti-AQP5 antibody and examined the localization of AQP5 protein in rat salivary and lacrimal glands by immunofluorescence microscopy. AQP5 was found in secretory acinar cells of submandibular, parotid, and sublingual glands, where it was restricted to apical membranes including intercellular secretory canaliculi. In the submandibular gland, abundant AQP5 was also found additionally at the apical membrane of intercalated duct cells. Upon stimulation by isoproterenol, apical staining for AQP5 in parotid acinar cells tended to appear as clusters of dots. These results suggest that AQP5 is one of the candidate molecules responsible for the water movement in the salivary glands.  相似文献   

9.
Aquaporins (AQPs) are a family of channel proteins that allow water or very small solutes to pass, functioning in tissues where the rapid and regulated transport of fluid is necessary, such as the kidney, lung, and salivary glands. Aquaporin-5 (AQP5) has been demonstrated to localize on the luminal surface of the acinar cells of the salivary glands. In this paper, we investigated the expression and function of AQP5 in the secretory granules of the rat parotid gland. AQP5 was detected in the secretory granule membranes by immunoblot analysis. The immunoelectron microscopy experiments confirmed that AQP5 was to be found in the secretory granule membrane. Anti-AQP5 antibody evoked lysis of the secretory granules but anti-aquaporin-1 antibody did not and AQP1 was not detected in the secretory granule membranes by immunoblot analysis. When chloride ions were removed from the solution prepared for suspending secretory granules, the granule lysis induced by anti-AQP5 antibody was inhibited. Furthermore, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, an anion channel blocker, blocked the anti-AQP5 antibody-induced secretory granule lysis. These results suggest that AQP5 is, expressed in the parotid gland secretory granule membrane and is involved in osmoregulation in the secretory granules.  相似文献   

10.
Developmentalexpression of aquaporin water transport proteins is not well understoodin respiratory tract or secretory glands; here we define aquaporinprotein ontogeny in rat. Expression of aquaporin-3 (AQP3), AQP4, andAQP5 proteins occurs within 2 wk after birth, whereas AQP1 firstappears before birth. In most tissues, aquaporin protein expressionincreases progressively, although transient high-level expression isnoted in distal lung (AQP4 at postnatal day+2) and trachea (AQP5 at postnatalday +21 and AQP3 at postnatal day+42). In mature animals, AQP5 is abundant in distallung and salivary glands, AQP3 and AQP4 are present in trachea, andAQP1 is present in all of these tissues except salivary glands.Surprisingly, all four aquaporin proteins are highly abundant innasopharynx. Unlike AQP1, corticosteroids did not induce expression ofAQP3, AQP4, or AQP5 in lung. Our results seemingly implicate aquaporinsin proximal airway humidification, glandular secretion, and perinatalclearance of fluid from distal airways. However, the studies underscorea need for detailed immunohistochemical characterizations anddefinitive functional studies.

  相似文献   

11.
Aquaporin 5 (AQP5) is known to be central for salivary fluid secretion. A study of the temporal-spatial distribution of AQP5 during submandibular gland (SMG) development and in adult tissues might offer further clues to its unknown role during development. In the present work, SMGs from embryonic day (E) 14.5–18.5 and postnatal days (P) 0, 2, 5, 25, and 60 were immunostained for AQP5 and analyzed using light microscopy. Additional confocal and transmission electron microscopy were performed on P60 glands. Our results show that AQP5 expression first occurs in a scattered pattern in the late canalicular stage and becomes more prominent and organized in the terminal tubuli/pro-acinar cells towards birth. Additional apical membrane staining in the entire intralobular duct is found just prior to birth. During postnatal development, AQP5 is expressed in both the luminal and lateral membrane of pro-acinar/acinar cells. AQP5 is also detected in the basal membrane of acinar cells at P25 and P60. In the intercalated ducts at P60, the male glands show apical staining in the entire segment, while only the proximal region is positive in the female glands. These results demonstrate an evolving distribution of AQP5 during pre- and postnatal development in the mouse SMGs.  相似文献   

12.
Ma L  Huang YG  Deng YC  Tian JY  Rao ZR  Che HL  Zhang HF  Zhao G 《Life sciences》2007,80(26):2461-2468
Decreased sweat secretion is a primary side effect of topiramate in pediatric patients, but the mechanism underlying this effect remains unclear. This study aimed to better understand how topiramate decreases sweat secretion by examining its effect on the expression of carbonic anhydrase (CA) II and aquaporin-5 (AQP5), total CA activity, as well as on tissue morphology of sweat glands in mice. Both developing and mature mice were treated with a low (20 mg/kg/day) and high dose (80 mg/kg/day) of topiramate for 4 weeks. Sweat secretion was investigated by an established technique of examining mold impressions of hind paws. CA II and AQP5 expression levels were determined by immunofluorescence and immunoblotting and CA activity by a colorimetric assay. In mature mice, topiramate treatment decreased the number of pilocarpine reactive sweat glands from baseline in both the low and high dose groups by 83% and 75%, respectively. A similar decrease was seen in developing mice. Mature mice with reactive sweat glands that declined more than 25% compared to baseline were defined as anhidrotic mice. These mice did not differ from controls in average secretory coil diameter, CA II expression and CA activity. In contrast, anhidrotic mice did show a reduction in membrane AQP5 expression in sweat glands after topiramate delivery. Thus, sweat secretion and membrane AQP5 expression in mouse sweat glands decreased following topiramate administration. These results suggest dysregulation of AQP5 may be involved in topiramate-induced hypohidrosis and topiramate may serve as a novel therapy for hyperhidrosis.  相似文献   

13.
14.
Most mammalian sympathetic neurons are noradrenergic, and their dependence upon nerve growth factor (NGF) for survival during development is well established. A minor population of sympathetic neurons, including those that innervate sweat glands, is cholinergic. To determine whether cholinergic sympathetic neurons, like their noradrenergic counterparts, require NGF during development, neonatal rats were treated with NGF-antiserum and 3 weeks later their sweat glands were examined for the presence of innervation. Acetylcholinesterase (AChE) staining and vasoactive intestinal polypeptide-like immunoreactivity (VIP-IR) which mark the mature sweat gland innervation were absent from the sweat glands of the anti-NGF treated animals. Further, when the glands were examined with the electron microscope, no axons or nerve terminals were evident. These observations indicate that the elaboration of the sweat gland plexus is NGF-dependent and suggest that at least one population of cholinergic sympathetic neurons in the rat requires NGF for survival. Our findings are consistent with the idea that during development NGF is a required trophic factor not only for noradrenergic sympathetic but also for cholinergic sympathetic neurons.  相似文献   

15.
In contrast to the majority of sympathetic neurons which are noradrenergic, the sympathetic neurons which innervate sweat glands are cholinergic. Previous studies have demonstrated that during development the sweat gland innervation initially contains catecholamines which are lost as cholinergic function appears. The neurotransmitter phenotype of sweat gland neurons further differs from the majority in that they contain vasoactive intestinal peptide (VIP) rather than neuropeptide Y (NPY). In the experiments described here, we addressed the question of whether sympathetic targets influence the neurotransmitter-related properties of the neurons which innervate them; in particular, do sweat glands play a role in reducing the expression of noradrenergic properties and inducing the expression of cholinergic properties and VIP in sympathetic neurons? This was accomplished by cotransplanting to the anterior chamber of the eye of host rats the superior cervical ganglia (SCG) which contains neurons that normally innervate targets other than the sweat glands and differentiate noradrenergically and footpad tissue from neonatal rats. Sweat glands developed in the transplanted footpad tissue and became innervated by the cotransplanted SCG neurons. The transplanted neurons and sweat gland innervation initially exhibited catecholamine histofluorescence which declined with further development in the anterior chamber. After 4 weeks, choline acetyltransferase (ChAT) and VIP immunoreactivities were evident. These observations suggest that as in the neurons which innervate the glands in situ, noradrenergic properties were suppressed and cholinergic function was induced in the neurons which innervated the glands in oculo. To distinguish a specific influence of the sweat glands on transmitter choice, SCG were also cotransplanted with the pineal gland, a normal target of the ganglion. Neurons cotransplanted with the pineal gland continued to exhibit catecholamine histofluorescence and contained NPY immunoreactivity. At least some neurons in SCG/pineal cotransplants, however, developed ChAT immunoreactivity. The target-appropriate expression of catecholamines and peptides in these experiments is consistent with the hypothesis that some transmitter properties are influenced by target tissues. The indiscriminant expression of ChAT, however, suggests that at least in oculo, additional factors can influence transmitter choice.  相似文献   

16.
Previous studies suggest that the sympathetic innervation of the sweat glands in the rat is initially noradrenergic and during development undergoes a transition in neurotransmitter phenotype to become cholinergic. To characterize this system and its development further, we have examined the adrenergic and cholinergic components of the secretory response in adult and immature rats and have studied the onset of sweating in the plantar sweat glands of developing rats. Stimulation of the sciatic nerve in adult rats elicited a secretory response which was completely blocked by the cholinergic antagonist, atropine, and was unaffected by adrenergic antagonists, indicating that nerve-evoked secretion was cholinergic. In adult rats, the sweat glands were quite sensitive to cholinergic agonists. In addition to acetylcholine, the mature sweat gland innervation contains vasoactive intestinal peptide (VIP). In some rats, the injection of VIP alone elicited a secretory response which was blocked by atropine, suggesting that the response to VIP was mediated cholinergically. In contrast to cholinergic agonists, the glands responded relatively infrequently and with reduced volumes of sweat to the alpha- and beta-adrenergic agonists 6-fluoronorepinephrine and isoproterenol. However, when VIP, which is a potent vasodilator, was simultaneously injected with adrenergic agonists, glands in many of the injected footpads exhibited a secretory response. The response to adrenergic agonists in combination with VIP was reduced by atropine and by phentolamine plus propranolol, but was blocked completely only by a combination of the three antagonists, indicating that both adrenergic and cholinergic mechanisms were involved. In immature rats, sweating evoked by nerve stimulation first appeared at 14 days of age in 25% of the rats tested. Both the percentage of rats sweating and the number of active glands increased rapidly. At 16 days, 50% of the rats tested exhibited some active glands, and by 21 days all rats tested exhibited a secretory response. In 16-day-old rats, nerve-evoked sweating was almost completely inhibited by local injection of 1 microM atropine, but was unaffected by phentolamine and propranolol in concentrations up to 10 microM. Similarly, the glands were sensitive to 10 microM muscarine, but they exhibited no secretory response to the alpha-adrenergic agonists, clonidine and 6-fluoronorepinephrine, nor to the beta-adrenergic agonist, isoproterenol, at concentrations up to 50 microM. The simultaneous injection of VIP with adrenergic agonists did not reveal an adrenergically mediated secretory response in 16-day-old animals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Both cholinergic and adrenergic stimulation can induce sweat secretion in human eccrine sweat glands, but whether cholinergic and adrenergic stimulation play same roles in rat eccrine sweat glands is still controversial. To explore the innervations, and adrenergic- and cholinergic-induced secretory response in developing and developed rat eccrine sweat glands, rat hind footpads from embryonic day (E) 15.5–20.5, postanal day (P) 1–14, P21 and adult were fixed, embedded, sectioned and subjected to immunofluorescence staining for general fiber marker protein gene product 9.5 (PGP 9.5), adrenergic fiber marker tyrosine hydroxylase (TH) and cholinergic fiber marker vasoactive intestinal peptide (VIP), and cholinergic- and adrenergic-induced sweat secretion was detected at P1–P21 and adult rats by starch-iodine test. The results showed that eccrine sweat gland placodes of SD rats were first appeared at E19.5, and the expression of PGP 9.5 was detected surrounding the sweat gland placodes at E19.5, TH at P7, and VIP at P11. Pilocarpine-induced sweat secretion was first detected at P16 in hind footpads by starch-iodine test. There was no measurable sweating when stimulated by alpha- or beta-adrenergic agonists at all the examined time points. We conclude that rat eccrine sweat glands, just as human eccrine sweat glands, co-express adrenergic and cholinergic fibers, but different from human eccrine sweat glands, cholinergic- rather than adrenergic-induced sweating plays a role in the developing and developed rat eccrine sweat glands.  相似文献   

18.
Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow.  相似文献   

19.
20.
Li Z  Zhao D  Gong B  Xu Y  Sun H  Yang B  Zhao X 《Radiation research》2006,165(6):678-687
The molecular mechanisms of radiation-induced xerostomia remain unclear. The purpose of this study was to investigate the alterations of aquaporins (AQPs) and Na(+)/K(+)-ATPase in irradiated rat submandibular glands and to test the hypothesis that down-regulation of AQP5 expression in irradiated salivary glands is one of the mechanisms of radiation-induced xerostomia. Saliva from control and irradiated rat submandibular glands was analyzed. The mRNA level of AQP5 in the submandibular glands was assessed by semi-quantitative RT-PCR and in situ hybridization. The protein expression of AQP5, AQP1 and Na(+)/K(+)-ATPase was determined by Western blotting and immunohistochemistry. The body weight, submandibular gland weight, and saliva secretion of irradiated rats significantly decreased by 12, 24 and 32% on day 3 and 24, 16 and 38% on day 30 postirradiation, respectively. There was a significant increase in the protein concentration and osmolality of saliva in irradiated rats on days 3 and 30 postirradiation. However, there was no significant difference between irradiated and control rats in total saliva protein secretion. RT-PCR analysis showed that mRNA expression of AQP5 was significantly down-regulated by 37 and 51% in irradiated rats on days 3 and 30 postirradiation, respectively. Immunoblotting showed that the AQP5 protein level was decreased by 40 and 60% in irradiated glands, in contrast to the slight reductions of AQP1 and Na(+)/K(+)-ATPase proteins. Immunohistochemical analysis demonstrated that loss of AQP5 protein occurred throughout the irradiated glands, while no significant reduction was detected in AQP1 and Na(+)/ K(+)-ATPase labeling density. These results suggest that the preferential down-regulation of AQP5 with minor effects on AQP1 and Na(+)/K(+)-ATPase may contribute to radiation-induced salivary dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号