首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
应用分子印迹技术,以邻苯二胺和对苯二酚为功能单体,心肌肌钙蛋白Ⅰ(cTnI)为模板分子,在pH 7.0磷酸盐缓冲液中,利用循环伏安法在玻碳电极表面聚合形成了分子印迹膜.该分子膜对cTnI有特异性识别作用,在0.01~2.00 μg/mL的范围内,cTnI的浓度与氧化峰电流的变化呈线性关系,检测下限为2 ng/mL,响应时间为15 min.该分子印迹传感器具有制备简单、特异性及稳定性好等优点.  相似文献   

2.
分子印迹技术应用于血清中地高辛的快速检测   总被引:1,自引:0,他引:1  
应用分子印迹的方法制备对地高辛有特异性吸附性能的印迹聚合物颗粒,再将颗粒与琼脂糖混合并固定于玻碳电极上制备成地高辛分子印迹聚合膜传感器,传感器可以特异性地结合模板分子地高辛且其电化学信号与模板浓度相关,再用它来检测血清中地高辛的含量。结果表明:分子印迹传感器具有制作简便、成本低、检测快速、特异性高、稳定性好等优点,检测下限为1.28 nmol/L,检测时间为5 min。  相似文献   

3.
目的:合成异丙酚分子印迹聚合物,并用聚合物萃取人血浆中的异丙酚。方法:用热聚合法制备异丙酚分子印迹聚合物,考查聚合物的性能,并用它来萃取血浆中不同浓度的异丙酚。结果:模板分子和功能单体以氢键的方式结合;分子印迹聚合物选择性地吸附血浆中的异丙酚。结论:分子印迹聚合物可以从人血浆中吸附异丙酚,其吸附率受底物浓度的影响。  相似文献   

4.
电转移中蛋白质的透膜现象及其对蛋白质印迹结果的影响   总被引:6,自引:1,他引:5  
探讨了电转移中蛋白质的透膜现象及其对蛋白质印迹结果的影响.采用抗凋亡抑制蛋白-Survivin的抗体,对细胞裂解液进行蛋白质印迹.与常规操作方法不同之处是:在电转移的凝胶“三明治”中,重叠放置两张硝酸纤维素膜.电转移后,对两张膜同时进行免疫印迹.在特定的转移条件下,两张膜的免疫印迹都出现了Survivin蛋白的特异印迹带,证实了电转移中存在着蛋白质的透膜现象.转移时间、电流强度和蛋白质的分子质量,都是影响蛋白质透膜的相关因素.电转移中蛋白质的透膜,可以产生“印迹复制失真”的效应,从而最终影响蛋白质印迹定性和定量的结果.所得实验结果和结论,揭示了蛋白质印迹技术方法学中一个需要加以充分关注的问题,对于科学掌握和应用该技术具有积极作用.  相似文献   

5.
硝酸铵水凝胶分子印迹聚合物的制备   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:目前安全问题成为世界各国的首要问题,尤其是对炸药分子的检测。硝酸铵是硝铵炸药的主要成分。研究水凝胶分子印迹法对硝铵炸药分子的检测。方法:水凝胶分子印迹方法制备硝酸铵水凝胶分子印迹聚合物,运用静态结合实验对其结合率进行了测定。结果:聚合物对硝酸铵具有良好的识别和吸附性能。印迹聚合物的解离常数为4.08g/L,最大吸附量为3.51mg/g。结论:水凝胶分子印迹法可合成水溶性炸药分子印迹聚合物,并且识别及吸附性能良好。  相似文献   

6.
目的:目前安全问题成为世界各国的首要问题,尤其是对炸药分子的检测。硝酸铵是硝铵炸药的主要成分。研究水凝胶分子印迹法对硝铵炸药分子的检测。方法:水凝胶分子印迹方法制备硝酸铵水凝胶分子印迹聚合物,运用静态结合实验对其结合率进行了测定。结果:聚合物对硝酸铵具有良好的识别和吸附性能。印迹聚合物的解离常数为4.08g/L,最大吸附量为3.51mg/g。结论:水凝胶分子印迹法可合成水溶性炸药分子印迹聚合物,并且识别及吸附性能良好。  相似文献   

7.
利用放射性同位素标记的基因片段或cDNA探针进行核酸分子杂交是分析基因表达的有效手段。将细胞DNA或RNA样品经琼脂糖凝胶电泳分离后转移到硝酸纤维素膜上,然后与放射性探针杂交,即Southern印迹法和Northern印迹法已被普遍采用,为了简化操作,也常使用(Dot Blot)点印迹法。利用上述技术进行基因或基因产物分析时,首先需要从细胞分离、纯化RNA和DNA。如果需  相似文献   

8.
本研究制备了1-脱氧野尻霉素分子印迹聚合物微球,考察溶剂、反应时间对分子印迹聚合物产率以及性能的影响。以1-脱氧野尻霉素为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用沉淀聚合法合成分子印迹微球,采用静态吸附及扫描电镜(SEM)的方法对微球进行表征。结果表明,当反应时间为24 h、乙腈为溶剂时,所制得印迹聚合物微球的形貌和吸附性能较好,对1-脱氧野尻霉素与N-甲基-1-脱氧野尻霉素的选择性分离因子α为2.26,说明分子印迹聚合物微球对1-脱氧野尻霉素分子有特异性吸附和识别能力。  相似文献   

9.
将分子印迹技术与电化学相结合,构建了能同步提取和检测敌草隆的快速新型电化学传感器。采用表面印迹法合成了对敌草隆具有特异性吸附功能的磁性分子印迹聚合物,通过磁分离快速提取食品介质中的敌草隆;进一步通过磁吸附作用,将磁性印迹材料固定在磁性玻碳电极表面,在含有KCl的铁氰化钾和亚铁氰化钾的混合溶液中,利用示差脉冲伏安法测定敌草隆含量。该方法在0. 000 4~0. 03 mmol/L敌草隆浓度范围内有良好的线性关系(R2=0. 992 9),检测限为1. 3×10-5mmol/L。在实际样品自来水、茶饮料、大白菜中的加标回收率为95%~110%,相对标准偏差0. 7%~8. 1%,能较好地应用于实际样品的检测。综上,此传感器能实现提取检测一体化,具有较好的实时检测能力,其方法灵敏度高、重现性和稳定性较好,在食品安全领域具有很好的应用前景。  相似文献   

10.
将玻碳电极进行阳极氧化和氨基化修饰,通过碳二亚胺盐酸盐(EDC)、N-羟基丁二酰亚胺(NHS)活化作用将青霉素适配子结合在电极表面。该适配子电化学生物传感器分子识别能力强、无放射性标记、检测速率快,青霉素类的最佳检测范围是2.81~281 nmol/L,最低检测限为2.81 nmol/L,检测时间为5 m in。  相似文献   

11.
Jing T  Xia H  Niu J  Zhou Y  Dai Q  Hao Q  Zhou Y  Mei S 《Biosensors & bioelectronics》2011,26(11):4450-4456
A rapid, sensitive and selective electrochemical method was proposed for the determination of 2,4-dinitrophenol (2,4-DNP) in surface water samples, using hydrophilic molecular imprinted polymers (MIPs) as the recognition element and nickel (Ni) fiber as the catalytic element. Hydrophilic MIPs were synthesized using 2,4-DNP as the template, acrylamide as the monomer, glycidilmethacrylate as the pro-hydrophilic co-monomer and acetonitrile as the solvent. Hydrophilic modification could enhance the accessibility of 2,4-DNP to the imprinted cavities and improve the selective recognition properties of traditional MIPs in water medium. Subsequently, hydrophilic MIPs/Ni fiber electrode was prepared to determine trace 2,4-DNP by cyclic voltammetry. The parameters affecting the analytical performance were investigated. Under optimized conditions, the linear range was 0.7-30 μg L?1 and the detection limit was 0.1 μg L?1. Finally, the proposed method was applied to measure 2,4-DNP in surface water samples. The spiked recoveries were changed from 91.3% to 102.6% and the RSD was not higher than 5.1%. There was no statistically significant difference between the results obtained by the proposed method and the traditional chromatographic method.  相似文献   

12.
There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N? porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 μm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm?2 hr?1 bar?1. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput.  相似文献   

13.
The effects of different calcium (Ca(2+)), magnesium (Mg(2+)), and zinc (Zn(2+)) concentrations supplemented on hepatopancreatic cell proliferation of kuruma prawn, Penaeus japonicus was studied. The culture system consists of medium 199 (M 199) supplemented with 0.060 mol/L NaCl, 1.011 g/L glucose, 1,000 UI/ml penicillin, 1,000 μg/ml treptomycin, heat inactivated fetal calf serum (FCS) 20% for primary cell culture and 10% for subculture. The RNA/DNA ratio of the cell cultures was measured. The results show that the cell division of hepatopancreatic cells of P. japonicus was enhanced by the optimal concentration of inorganic salt (Ca(2+), 1.0 g/L; Mg(2+), 5.0 g/L; Zn(2+), 80 μg/L). The hepatopancreatic cell culture system and improved culture conditions described here will be very useful for in vitro experiments to study viruses responsible for infections in shrimp leading to tremendous economic losses.  相似文献   

14.
A surfactant was a substance that had an important influence on the excretion of intracellular substances. In this work, it was found that cetyltrimethylammonium bromide (CTAB) inhibited cell viability but increased the mannatide production by optimizing the addition time. Results revealed that CTAB changed cell surface properties (cell surface hydrophobicity and Zeta potential was increased from 3% to 14% and −14.5 mV to −10.2 mV, respectively) and permeabilized cell membrane (intercellular ATP content was decreased from 28.599 μg/g to 9.737 μg/g while extracellular ATP content was increased from 33.051 μg/g to 82.809 μg/g; the concentrations of K+ and Ca2+ were increased to 3.9 mg/L and 2.1 mg/L, respectively; membrane potential was formed). Moreover, the images of scanning electron micrographs indicated distinct morphological changes and disruption on the surface of the cells. Further pyridinium iodides staining showed CTAB could induce cell apoptosis from 4.24% to 31% with increasing the relative intracellular reactive oxygen species (ROS) from 0.11% to 7.31%. It is the most noteworthy that the addition of CTAB increased the mannatide production to 1.46 g/L, 98.6% higher than that of untreated cells. Consequently, the utilization of CTAB for the preparation of mannatide provide theoretical foundation for the further large-scale production.  相似文献   

15.
A recombinant Escherichia coli HB101(pPAKS2) producing penicillin acylase was cultured in a membrane cell recycle fermentor. The strain was very stable throughout the whole experiment. The main inhibitory by-product was acetic acid, and cell growth ceased when its concentration was above 14 g/L Cell density could be increased up to 145 g/L dry weight without experiencing by-product inhibition by regulating glucose concentration in the fermentor and by using total membrane recycle. Acetic acid formation was negligible not only when cells were cultured in medium containing no glucose but also when glucose was limited. Dissolved oxygen control as well as glucose limitation was an indispensable condition for minimizing acetic acid formation when the medium contained glucose. Low concentrations of accumulated acetic acid were reused when glucose was limited. Use of highly concentrated medium reduced the membrane surface area required for cell recycle greatly. The recycle fermentor could be operated in various operational modes including partial bleed and repeated recycle culture to give high productivity. Productivity of a repeated recycle system was over 10 times higher than that of a simple batch system.  相似文献   

16.
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)<500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10(-5) to 1 × 10(-10) and 1 × 10(-3) to 1 × 10(-8)mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10(-8)mol/L) SMX for a sub-Nernstian slope of -40.3 mV/decade from 5.0 × 10(-8) to 2.4 × 10(-5)mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and "pipette tip"-based sensors were successfully applied to the analysis of aquaculture waters.  相似文献   

17.
采用沉淀聚合法制备孔雀石绿分子印迹聚合物(MG-MIPs),以洗脱效率及吸附量为指标,考察超声波辅助抽提法对MIPs中MG洗脱效果及吸附性能的影响,通过扫描电镜观察MIPs的表面形态,并对其吸附性能进行研究。结果表明:模板分子MG在超声30 min、超声10次、料液比m(MG-MIPs)∶V(甲醇-乙酸溶液)为1∶10(g/m L)、温度为25℃、超声功率为270 W的条件下,洗脱效果最好,MIPs在固相萃取柱中的吸附效率较高,达到198μg/g。  相似文献   

18.
Uracil (URA) was selected as a template for preparing molecularly imprinted membranes of poly(acrylonitrile-co-methylacrylic acid) [P(AN-co-MAA)] using the phase inversion technique. This study used Fourier transform infra-red (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopic studies to characterize the polymer-template interaction and scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphology of the URA imprinted membrane. Resultant membranes had typical ultrafiltration structure with porous morphology and showed a permeation flux of 3.5 x 10 9-5)m(3)/(m(2)s) for 32 microM URA aqueous solution. Permselective binding to the target molecule was observed in permeation experiments with 7.9 micromol/g binding capacity of URA. Binding selectivity was discussed for URA and its analogs, dimethyluracil (DMURA) and caffeine (CAF), with 0.6 and 0.8 micromol/g binding capacity, respectively.  相似文献   

19.
Using ferricyanide as the membrane impermeable electron acceptor, the effects of extracellular calmodulin on transplasma membrane redox reaction of the root protoplasts in Zea mays L. were studied. The calmodulin antagonists (calmidazolium, W7-agarose) and anti-calmodulin serum had inhibitory effect on the extracellular reduction of ferricyanide with their concentration that yielded 50% inhibition were 1.5 μmoL/L, 10 μmol/L and 10 mg/L respectively. Inhibition of calmidazolimn could be restored by calmodulin completely. And the reduction of ferricyanide could be specifically stimulated by the exogerous purified calmodulin. These results suggested that transplasma membrane redox system of root protoplasts in Zea mays L. could be modulated by calmodulin outside the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号