首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Confluent cultures of a human neuroblastoma cell line (CHP100) were incubated for 48 h with d-[1-3H]glucosamine and sodium [35S]sulphate. Radioactive glycosaminoglycans were analysed in the growth medium, rapid trypsin digest of the cell monolayer and a 1% (w/v) Triton/0.5 M NaOH extract of the final cell pellet. Sulphated glycosaminoglycans co-chromatographed when eluted by NaCL gradient from DEAE-cellulose. The medium contained mainly chondroitin sulphates, whereas the cell surface was enriched in heparan sulphate. Heparan sulphate was isolated as chondroitinase ABC-resistant material and treated with nitrous acid. Analysis of the scission products on Bio-Gel P-10 yielded fragments varying in size from single disaccharides to glycans consisting of nine disaccharide units. Cell-surface and medium heparan sulphate had respectively 52% and 54% N-sulphated glucosamine residues distributed in similar patterns along the polymer chain. The N:O-sulphate ratio of neuroblastoma heparan sulphate was 1.1:1. Analysis by high-voltage electrophoresis of di- and tetrasaccharide products produced by nitrous acid treatment showed that the distribution of ‘O’-sulphate groups differed strikingly between heparan sulphates from the medium and cell-surface compartments. A di-O-sulphated tetrasaccharide was identified in both heparan sulphate species. The absence of detectable amounts of 35[S]sulphate associated with fragments larger than tetrasaccharide supports the close topographical association of N-sulphate and O-sulphate groups.  相似文献   

2.
Purified bovine milk lipoprotein lipase was shown to bind to intact porcine aortic endothelium in a specific, saturable fashion. The binding was reversed by exogenous heparin. A single class of binding sites was involved and at saturation 1.24?1011 molecules of lipoprotein lipase / cm2 were bound. This represents 0.51?106 enzyme molecules per endothelial cell at a density of 1.2?103 molecules / μm2. The enzyme binding was reduced by prior trypsinisation of the endothelial surface under conditions that removed cell surface glycosaminoglycan chains. The porcine endothelium was shown to have available at its surface 5.4?1011 chains of heparan sulphate plus heparin-like glycosaminoglycans / cm2. Such as excess suggests that lipoprotein lipase may interact with approximately one in four of the available heparan sulphate chains.  相似文献   

3.
Biosynthesis of glycosaminoglycans by cultured mastocytoma cells   总被引:3,自引:1,他引:2       下载免费PDF全文
Biosynthesis of glycosaminoglycans by several lines of cultured neoplastic mouse mast cells was studied by incorporation of [35S]sulphate (and in some cases [6-3H]glucosamine) into macromolecular materials found in both the cells and their growth media. Such intracellular and extracellular radioactively labelled materials (shown to be glycosaminoglycans by susceptibility to digestion with heparinase) were further characterized by ion-exchange chromatography and by digestion with testicular hyaluronidase and chondroitinase. All but one cell line produced chondroitin sulphate as the major sulphated glycosaminoglycan; the remainder of the glycosaminoglycan was heparin-like material. No [3H]hyaluronic acid was synthesized. Cells of a newly derived line, termed P815S, synthesized more glycosaminoglycan than the other lines. This glycosaminoglycan, found in both cells and growth medium, was almost entirely chondroitin 4-sulphate. No chondroitin 6-sulphate was found. The chondroitin 4-sulphate from the cells was shown by gel filtration to be smaller than the chondroitin 4-sulphate in the media of these cultures. This discovery of relatively high proportions of chondroitin 4-sulphate in these mastocytoma-derived cells is noteworthy, since mast cells have generally been considered to produce heparin as their major glycosaminoglycan.  相似文献   

4.
The incorporation of [35S]-SO4 into glycosaminoglycans of liverin vivo and in in liver slices and into the glycosaminoglycans associated with the hepatic plasma membrane of rats at different periods after a heavy dose of CC14 have been studied. The incorporation of [35S]-SO4 into total glycosaminoglycans decreased to as low as 40% of the control at 24 h after the administration of CC14 and later on increased reaching a maximum on the 4th day. The amount of [35S]-SO4 incorporation into heparan sulphate was also reduced to about 40% of control at 12–24 h after the onset of injury and increased thereafter reaching a maximum on the 4th day. There was only a partial reduction in the synthesis of chondroitin sulphate in the early stage of injury and then it steadily increased reaching about 3 times the control level on 4–6 days. The [35S]-SO4-incorporation into dermatan sulphate, after a slight initial decrease remained at the control levels. On the 8th day after the CCl4-induced liver injury, the rate of [35S]-SO4-incorporation was almost equal to that in normal controls. The incorporation of [35S]-SO4 into hepatic plasma membrane glycosaminoglycans showed a similar change decreasing to about 35% of control at 24h followed by an increase, reaching normal levels on the 4th day after the administration of CC14. About 90% of the plasma membrane glycosaminoglycans was found to be heparan sulphate. The yield of plasma membrane from normal and CCl4-induced regenerating liver was found to be similar and therefore the results obtained were not due to difference in the yield of the membrane preparation. The data also indicate that there was no difference in the degree of sulphation. The significance of these changes in the metabolism of sulphated glycosaminoglycans particularly plasma membrane heparan sulphate in tissue regeneration has been discussed.  相似文献   

5.
Although lactoferrins (Lfs) isolated from milk of various mammals exhibit a close structural relationship, they show species-specific binding to cells. To define the specificity of recognition of human (hLf), bovine (bLf) and murine (mLf) lactoferrin by human intestinal cells, we analysed the binding of the three proteins to a subclone derived from human carcinoma cell line HT29. We observed that hLf and bLf interact with two types of binding sites (Kd: 63±22 nM; 0.7±0.2 μM) while mLf was recognized only by the lowest affinity binding sites with a lower number of binding sites. Using N-terminal deleted human Lf variants, we found that the sequence G1RRRR5 is mainly responsible for the interactions with HT29 cells. Lactoferrin-binding sites on the surface of HT29 cells were further identified as heparan sulphate and chondroitin sulphate glycosaminoglycans. We conclude that the presence of the sequence A1PRK4 in bLf and K1ATT4 in mLf provides an insight into why the interaction of bLf with cell membrane-associated glycosaminoglycans is similar to that of hLf and why binding of these lactoferrin species differs from that of murine Lf.  相似文献   

6.
—A sulphotransferase system of rat brain catalyses the transfer of sulphate from 3′-phosphoadenosine 5′-phosphosulphate to the low-sulphated glycosaminoglycans isolated from normal adult human brain. These were shown to be precursors of higher-sulphated glycosaminoglycans by DEAE-Sephadex column chromatography and paper electrophoresis. Nitrous acid degradation and mild acid hydrolysis of enzymically-sulphated fractions further confirmed the presence of heparan sulphate in human brain. A partially purified sulphotransferase preparation was obtained from neonatal human brain using chondroitin-4-sulphate as sulphate acceptor. This sulphotransferase catalyses the transfer of sulphate to the various uronic acid containing glycosaminoglycans. Heparan sulphate was the best sulphate acceptor followed by dermatan sulphate, N-desulphoheparin, chondroitin-4-sulphate and chondroitin-6-sulphate in decreasing order. Sulphotransferase obtained from 1-day-old rat, rabbit and guinea pig brain also had the same pattern of specificity towards various sulphate acceptors. This sulphotransferase catalyses both N-sulphation and O-sulphation. Studies on the sulphotransferase obtained from both rat and human brain of various age groups indicate that the ratio of N-sulphation: O-sulphation decreases as the brain matures.  相似文献   

7.
Interactions of fibronectin and glycosaminoglycans and the involvement of heparan sulphate and hyaluronate in fibronectin-collagen interactions have been studied by affinity chromatography. Partially periodate-oxidized glycosaminoglycans were coupled to adipic acid dihydrazide-substituted agarose. The elution of fibronectin was performed by using increasing concentrations of NaCl. Of the copolymeric glycosaminoglycans, heparin and self-associating heparan sulphates display the highest affinity towards fibronectin while hyaluronic acid and chondroitin 6-sulphate do not bind fibronectin. Competitive release experiments suggest the existence of common binding sites for copolymeric glycosaminoglycans on the fibronectin backbone. Heparan sulphate favours the formation of collagen-fibronectin complexes at low molarity, while hyaluronate is ineffective at low concentrations and prevents the formation of complexes when present at concentrations > 1 mg ml?1. It is suggested that heparan sulphate promotes the formation of complexes which bind with fibronectin thus producing steric changes that increase the affinity for collagen, while hyaluronate prevents the binding of fibronectin to collagen by a steric exclusion mechanism.  相似文献   

8.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

9.
Cultured rat and bovine smooth muscle cells incorporated more 35SO4 into macromolecular glycosaminoglycans in the presence of β-d-xylosides than in their absence. More than 90% of the xyloside-initiated glycosaminoglycans were secreted rapidly into the culture medium and were more highly sulphated than glycosaminoglycans polymerized on core protein. The increased extents of sulphation were associated with increased synthesis of dermatan sulphate and a decrease in that of nitrous acid-sensitive glycosaminoglycans.  相似文献   

10.
Protease nexin-1 (PN-1) is a proteinase inhibitor that is secreted by human fibroblasts in culture. PN-1 inhibits certain regulatory serine proteinases by forming a covalent complex with the catalytic-site serine residue; the complex then binds to the cell surface and is internalized and degraded. The fibroblast surface was recently shown to accelerate the rate of complex-formation between PN-1 and thrombin. The present paper demonstrates that the accelerative activity is primarily due to cell-surface heparan sulphate, with a much smaller contribution from chondroitin sulphate. This conclusion is supported by the effects of purified glycosaminoglycans on the second-order rate constant for the inhibition of thrombin by PN-1. Also, treatment of 35SO4(2-)-labelled cells with heparitin sulphate lyase or chondroitin sulphate ABC lyase demonstrated two discrete pools of 35S-labelled glycosaminoglycans; subsequent treatment of plasma membranes with these glycosidases showed that heparitin sulphate lyase treatment abolished about 80% of the accelerative activity and chondroitin sulphate ABC lyase removed the remaining 20%. These results show that two components are responsible for the acceleration of PN-1-thrombin complex-formation by human fibroblasts. Although dermatan sulphate is also present on fibroblasts, it did not accelerate the inhibition of thrombin by PN-1.  相似文献   

11.
Macrophages were obtained from the mouse peritoneal cavity and culturedin vitro. The cells were exposed to35S-sulphate for 20 h, and labelled proteoglycans were recovered from both medium and cell fractions by sodium dodecylsulphate solubilization. The cell fraction contained both proteoglycans and glycosaminoglycans, whereas only intact proteoglycans could be recovered from the medium fraction. 35S-Glycosaminoglycans isolated from cell and medium fractions by papain digestion were shown to contain approximately 25% heparan sulphate and 75% galactosaminoglycans comprising 55% chondroitin sulphate and 20% dermatan sulphate. The galactosaminoglycans were shown by paper chromatography to contain more than 95% 4-sulphated units. Pulse-chase experiments showed that approximately 80% of the cell-associated material was released within 6 h of incubation.35S-Proteoglycans released did not bind to the macrophages, but were recovered in a soluble form from the culture medium.Abbreviations CSPG chondroitin sulphate proteoglycan - HSPG heparan sulphate proteoglycan - SDS sodium dodecylsulphate - DME Dulbecco's Minimum Essential Medium - GAG glycosaminoglycan  相似文献   

12.
Foetal human lung fibroblasts, grown in monolayer, were allowed to incorporate 35SO42− for various periods of time. 35S-labelled macromolecular anionic products were isolated from the medium, a trypsin digest of the cells in monolayer and the cell residue. The various radioactive polysaccharides were identified as heparan sulphate and a galactosaminoglycan population (chondroitin sulphate and dermatan sulphate) by ion-exchange chromatography and by differential degradations with HNO2 and chondroitinase ABC. Most of the heparan sulphate was found in the trypsin digest, whereas the galactosaminoglycan components were largely confined to the medium. Electrophoretic studies on the various 35S-labelled galactosaminoglycans suggested the presence of a separate chondroitin sulphate component (i.e. a glucuronic acid-rich galactosaminoglycan). The 35S-labelled galactosaminoglycans were subjected to periodate oxidation of l-iduronic acid residues followed by scission in alkali. A periodate-resistant polymer fraction was obtained, which could be degraded to disaccharides by chondroitinase AC. However, most of the 35S-labelled galactosaminoglycans were extensively degraded by periodate oxidation–alkaline elimination. The oligosaccharides obtained were essentially resistant to chondroitinase AC, indicating that the iduronic acid-rich galactosaminoglycans (i.e. dermatan sulphate) were composed largely of repeating units containing sulphated or non-sulphated l-iduronic acid residues. The l-iduronic acid residues present in dermatan sulphate derived from the medium and the trypsin digest contained twice as much ester sulphate as did material associated with the cells. The content of d-glucuronic acid was low and similar in all three fractions. The relative distribution of glycosaminoglycans among the various fractions obtained from cultured lung fibroblasts was distinctly different from that of skin fibroblasts [Malmström, Carlstedt, Åberg & Fransson (1975) Biochem. J. 151, 477–489]. Moreover, subtle differences in co-polymeric structure of dermatan sulphate isolated from the two cell types could be detected.  相似文献   

13.
Summary Endothelial glycosaminoglycans are important in a diverse range of vascular functions. In the course of a biochemical and histological study exploring the role of glycosaminoglycans in inflammation, we have investigated the use of gold-conjugated poly-l-lysine with silver enhancement to establish the nature and physical location of glycosaminoglycans on the surface of cultured human umbilical vein endothelial cells. Cationic gold was effective in locating anionic sites in both cultured endothelial cells and in paraffin-embedded renal tissue. By manipulating pH, and by using enzymes specific for degrading glycosaminoglycans, it was found that, at pH 1.2, staining was directed primarily at glycosaminoglycans. The surface of human umbilical vein endothelial cells was found to be extensively covered in heparan sulphate, the histological appearance of which was dependent upon the fixation procedure employed. Heparan sulphate was also seen to co-distribute with the extracellular matrix protein, fibronectin, when endothelial cultures were simultaneously stained with cationic gold and an antibody to cellular fibronectin.  相似文献   

14.
Summary Using cuprolinic blue as a stain along with enzymic digestion, heparan sulphate has been identified as the main glycosaminoglycan in the basement membrane of human gallbladder epithelium. The amount of glycosaminoglycans was quantified by counting the number of molecular profiles cm–2 in electron micrographs of mildly, moderately and severely inflamed gallbladders. There is a significant increase (P=0.009) in the amount of glycosaminoglycans in the basement membranes of severely inflamed gallbladders compared with cases of mild chronic cholecystitis. Differences, although present, are less significant when mild and moderate or moderate and severe cholecystitis are compared. The findings suggest that there is a continuous accumulation of heparan sulphate in the basement membrane in chronic cholecystitis which increases in amount with the severity of inflammation.  相似文献   

15.
The sulfation of glycosaminoglycans by ascorbic acid 2-[3 5S]sulfate was studied in costal cartilage and chrndrocytes in vitro. Negligable (if any) sulfation of glycosaminoglycans was detected with immediately isolated ascorbic acid 2-[3 5S]sulfate. However, formation of [3 5S]glycosaminoglycans was readily detected with ascorbic acid 2-[3 5S]sulfate which had been stored at −20°C for several days. The [3 5S]glycosaminoglycans did not result from the direct transfer of 3 5S from ascorbic acid 2-sulfate but rather from a decomposition product of ascorbic acid 2-[3 5S]sulfate.Evidence is presented to show that the sulfation pathway with the decomposition product involves exchange with inorganic sulfate, and strongly suggests that sulfation proceeds via 3′-phosphoadenosine 5′-phosphosulfate. The decomposition product appears similar to inorganic sulfate in several test systems. In view of these observations, it is suggested that previous conclusions implicating ascorbic acid 2-sulfate as a biological sulfate donor, based on the use of ascorbic acid 2-[3 5S]sulfate be re-evaluated.  相似文献   

16.
A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with [3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major [35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal [35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of [35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total [35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of [35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with [3H]glucosamine, and cells on collagen gels with [14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.  相似文献   

17.

Background

The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific.

Methodology/Principal Finding

In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans.

Conclusions/Significance

Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.  相似文献   

18.
Mouse protein tyrosine phosphatase PTPBR7 is a receptor-like, transmembrane protein that is localized on the surface of neuronal cells. Its protein phosphatase activity is reduced upon multimerization, and PTPBR7-deficient mice display motor coordination defects. Extracellular molecules that may influence PTPBR7 activity, however, remain to be determined. We here show that the PTPBR7 extracellular domain binds to highly myelinated regions in mouse brain, in particular the white matter tracks in cerebellum. PTPBR7 deficiency does not alter this binding pattern, as witnessed by RAP in situ staining of Ptprr-/- mouse brain sections. Additional in situ and in vitro experiments also suggest that sugar moieties of heparan sulphate and chondroitin sulphate glycosaminoglycans are not critical for PTPBR7 binding. Candidate binding proteins were affinity-purified exploiting the PTPBR7 extracellular domain and identified by mass spectrometric means. Results support the suggested link between PTPRR isoforms and cerebellar calcium ion homeostasis, and suggest an additional role in the process of cell-cell adhesion.  相似文献   

19.
Vitreous fibrosis was induced in rabbit eyes by intravitreal injection of erythrocytes. The fibrotic vitreous removed from experimental animals were then incubated with [3H]glucosamine at 37°C for 24 h. The newly synthesized 3H-labeled glycosaminoglycans were isolated by 4 M guanidium hydrochloride extraction followed by pronase digestion. The 3H-labeled glycosaminoglycans were then characterized by gel filtration column chromatography and by specific enzymatic degradation, i.e., hyaluronidase, chondroitinase AC, and/or chondroitinase ABC. The disaccharides derived from chondroitinase ABC degradation were identified by thin-layer chromatography. We previously demonstrated that 91% of the total glycosaminoglycan synthesized by normal vitreous was hyaluronic acid. Our present results indicate that in the fibrotic vitreous, the synthesis of hyaluronic acid was decreased to 26%, whereas the synthesis of chondroitin sulfate increased to 59% of the total newly synthesized glycosaminoglycans. These results suggest that cells present in fibrotic vitreous resemble fibroblasts with respect to their activities in glycosaminoglycans synthesis.  相似文献   

20.
A sulphotransferase preparation from hen's uterus catalysed the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate to N-desulphated heparan sulphate, heparan sulphate, N-desulphated heparin and dermatan sulphate. Heparin, chondroitin sulphate and hyaluronic acid were inactive as substrates for the enzyme. N-desulphated heparin was a much poorer substrate for the enzyme than N-desulphated heparan sulphate suggesting that properties of the substrate other than available glucosaminyl residues influenced enzyme activity. N-acetylation of N-desulphated heparin and N-desulphated heparan sulphate reduced their sulphate acceptor properties so it was unlikely that the N-acetyl groups of heparan sulphate facilitated its sulphatiion. Direct evidence for the transfer of [35S]sulphate to amino groups of N-desulphated haparan sulphate was obtained by subsequent isolation of glucosamine N-[35S]sulphate from heparan [35S]sulphate product. This was made possible through the use of a flavobacterial enzyme preparation which contained “heparitinase” activity but had been essentially freed of sulphatases. Attempts to transfer [35S]sulphate to glucosamine or N-acetylglucosamine were unsuccessfull.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号