首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of four tumor cell lines, the murine YAC lymphoma, the human K562 lymphoma, and the human prostatic carcinomas PC3 and PC93, the susceptibility to murine natural killer (NK) cells as well as the tumorigenicity in young (3.5-4 weeks old) and in adult (8-10 weeks old) nude mice were studied. In young nude mice, which exhibited a lower level of NK cell activity than adult nude mice, the formation of solid tumors after inoculation of tumor cell suspensions occurred more frequently and with a shorter time lag than in adult animals. These effects were observed not only with the NK-sensitive YAC cells, but also with the relatively NK-insensitive PC3 and PC93 cells, indicating that also factors other than NK cell susceptibility may influence the growth of tumor cells in nude mice. Therefore, the use of young nude mice may enhance the rate of success of heterotransplantation of human tumors, regardless of the NK cell susceptibility of the tumor cells.  相似文献   

2.
3.
NK cells play an important role in the immune system but the cellular and molecular requirements for their early development are poorly understood. Lymphotoxin-alpha (LTalpha)(-/-) and LTbetaR(-/-) mice show a severe systemic reduction of NK cells, which provides an excellent model to study NK cell development. In this study, we show that the bone marrow (BM) or fetal liver cells from LTalpha(-/-) or LTbetaR(-/-) mice efficiently develop into mature NK cells in the presence of stromal cells from wild-type mice but not from LTalpha(-/-) or LTbetaR(-/-) mice. Direct activation of LTbetaR-expressing BM stromal cells is shown to promote to early NK cell development in vitro. Furthermore, the blockade of the interaction between LT and LTbetaR in adult wild-type mice by administration of LTbetaR-Ig impairs the development of NK cells in vivo. Together, these results indicate that the signal via LTbetaR on BM stromal cells by membrane LT is an important pathway for early NK cell development.  相似文献   

4.
NK cells differentiate in adult mice from bone marrow hemopoietic progenitors. Cytokines, including those that signal via receptors using the common cytokine receptor gamma-chain (gamma(c)), have been implicated at various stages of NK cell development. We have previously described committed NK cell precursors (NKPs), which have the capacity to generate NK cells, but not B, T, erythroid, or myeloid cells, after in vitro culture or transfer to a fetal thymic microenvironment. NKPs express the CD122 Ag (beta chain of the receptors for IL-2/IL-15), but lack other mature NK markers, including NK1.1, CD49b (DX5), or members of the Ly49 gene family. In this report, we have analyzed the roles for gamma(c)-dependent cytokines in the generation of bone marrow NKP and in their subsequent differentiation to mature NK cells in vivo. Normal numbers of NKPs are found in gamma(c)-deficient mice, suggesting that NK cell commitment is not dependent on IL-2, IL-4, IL-7, IL-9, IL-15, or IL-21. Although IL-2, IL-4, and IL-7 have been reported to influence NK cell differentiation, we find that mice deficient in any or all of these cytokines have normal NK cell numbers, phenotype, and effector functions. In contrast, IL-15 plays a dominant role in early NK cell differentiation by maintaining normal numbers of immature and mature NK cells in the bone marrow and spleen. Surprisingly, the few residual NK cells generated in absence of IL-15 appear relatively mature, expressing a variety of Ly49 receptors and demonstrating lytic and cytokine production capacity.  相似文献   

5.
Fetal liver- and thymus-derived NK1.1+ cells do not express known Ly-49 receptors. Despite the absence of Ly-49 inhibitory receptors, fetal and neonatal NK1.1+Ly-49- cells can distinguish between class Ihigh and class Ilow target cells, suggesting the existence of other class I-specific inhibitory receptors. We demonstrate that fetal NK1. 1+Ly-49- cell lysates contain CD94 protein and that a significant proportion of fetal NK cells are bound by Qa1b tetramers. Fetal and adult NK cells efficiently lyse lymphoblasts from Kb-/-Db-/- mice. Qa1b-specific peptides Qdm and HLA-CW4 leader peptide specifically inhibited the lysis of these blasts by adult and fetal NK cells. Qdm peptide also inhibited the lysis of Qa1b-transfected human 721.221 cells by fetal NK cells. Taken together, these results suggest that the CD94/NKG2A receptor complex is the major known inhibitory receptor for class I (Qa1b) molecules on developing fetal NK cells.  相似文献   

6.
We have examined the reported role of suppressor cells in the regulation of NK activity in mice with naturally low NK activity (infant and aged (C57 X A)F1 hybrids (CAF1) and low responder strain AKR mice). Possible suppressor activity was assayed by mixing, at a 1 : 1 ratio, spleen cells from low activity mice with spleen effector cells from normally active 8 to 10 wk old CAF1 mice. The lytic activity of the mixture was compared with the activity of effector cells diluted with medium alone or diluted 1 : 1 with "non-suppressor" population which served as a control for nonspecific decreases in lysis. The control or "filler" cells employed were suspensions of adult CAF1 thymus, thymus from adult mice exposed to 2,000 R, and adult CAF1 spleen cells cultured for 24 hours, a procedure that depleted NK activity. In no case was the activity observed in the presumed suppressor-effector mixture significantly lower than that observed in the filler-effector cell mixtures. Thus, in infant (1 to 2 wk) and aged (12 to 18 mo) CAF1 mice and in 8 to 10 wk old AKR mice, we found no evidence for specific cell-mediated suppression of natural cytotoxicity.  相似文献   

7.
8.
NK T cells are a unique lymphocyte population that have developmental requirements distinct from conventional T cells. Mice lacking the tyrosine kinase Fyn have 5- to 10-fold fewer mature NK T cells. This study shows that Fyn-deficient mice have decreased numbers of NK1.1(-) NK T cell progenitors as well. 5-Bromo-2'-deoxyuridine-labeling studies indicate that the NK T cells remaining in fyn(-/-) mice exhibit a similar turnover rate as wild-type cells. The fyn(-/-) NK T cells respond to alpha-galactosylceramide, a ligand recognized by NK T cells, and produce cytokines, but have depressed proliferative capacity. Transgenic expression of the NK T cell-specific TCR alpha-chain Valpha14Jalpha18 leads to a complete restoration of NK T cell numbers in fyn(-/-) mice. Together, these results suggest that Fyn may have a role before alpha-chain rearrangement rather than for positive selection or the peripheral upkeep of cell number. NK T cells can activate other lymphoid lineages via cytokine secretion. These secondary responses are impaired in Fyn-deficient mice, but occur normally in fyn mutants expressing the Valpha14Jalpha18 transgene. Because this transgene restores NK T cell numbers, the lack of secondary lymphocyte activation in the fyn-mutant mice is due to the decreased numbers of NK T cells present in the mutant, rather than an intrinsic defect in the ability of the other fyn(-/-) lymphoid populations to respond.  相似文献   

9.
NK cells have been shown to either promote or protect from autoimmune diseases. Several studies have examined the role of receptors preferentially expressed by NK cells in the spontaneous disease of NOD mice or the direct role of NK cells in acute induced disease models of diabetes. Yet, the role of NK cells in spontaneous diabetes has not been directly addressed. Here, we used the NOD.NK1.1 congenic mouse model to examine the role of NK cells in spontaneous diabetes. Significant numbers of NK cells were only seen in the pancreas of mice with disease. Pancreatic NK cells displayed an activated surface phenotype and proliferated more than NK cells from other tissues in the diseased mice. Nonetheless, depletion of NK cells had no effect on dendritic cell maturation or T cell proliferation. In spontaneous disease, the deletion of NK cells had no significant impact on disease onset. NK cells were also not required to promote disease induced by adoptively transferred pathogenic CD4(+) T cells. Thus, NK cells are not required for spontaneous autoimmune diabetes in NOD mice.  相似文献   

10.
NK cells not only respond rapidly to infection, shaping subsequent adaptive immunity, but also play a role in regulating autoimmune disease. The ability of NK cells to influence adaptive immunity before Ag exposure was examined in a gender-dependent model of preferential Th1 and Th2 activation. The inability of young adult male SJL mice to activate Th1 cells was reversed via depletion of NK1.1(+) cells, whereas the presence or the absence of NK1.1(+) cells did not alter responses in age-matched females. Consistent with a gender-dependent role in regulating adaptive immunity, significantly more NK1.1(+) cells were present in males compared with females, and this difference was reversed by castration. In contrast to NK1.1(+) cells derived from C57BL/6 mice, no spontaneous cytokine secretion was detected in NK1.1(+) cells derived from either male or female SJL mice, although an increased frequency of IL-10-secreting NK1.1(+) cells was observed in males vs females following in vitro stimulation. Direct evidence that NK1.1(+) cells in males influence CD4(+) T cell activation before Ag exposure was demonstrated via the adoptive transfer of APC from control and NK1.1-depleted males. The absence of a functional NK T cell population in SJL mice suggests that NK cells influence adaptive immunity before Ag exposure via alterations in APC activity.  相似文献   

11.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

12.
One interesting aspect of NKT cell development is that although they are thymus dependent, the pivotal transition from NK1.1(-) to NK1.1(+) can often take place after immature NK1.1(-) NKT cells are exported to the periphery. NK1.1(-) NKT cells in general are regarded as immature precursors of NK1.1(+) NKT cells, meaning that peripheral NK1.1(-) NKT cells are regarded as a transient, semimature population of recent thymic emigrant NKT cells. In this study, we report the unexpected finding that most NK1.1(-) NKT cells in the periphery of naive mice are actually part of a stable, mature and functionally distinct NKT cell population. Using adult thymectomy, we show that the size of the peripheral NK1.1(-) NKT cell pool is maintained independently of thymic export and is not the result of NK1.1 down-regulation by mature cells. We also demonstrate that most peripheral NK1.1(-) NKT cells are functionally distinct from their immature thymic counterparts, and from NK1.1(+) NKT cells in the periphery. We conclude that the vast majority of peripheral NK1.1(-) NKT cells are part of a previously unrecognized, mature NKT cell subset.  相似文献   

13.
Cells bearing the NK-specific marker NK-1.1 were purified from mouse spleens by utilizing a monoclonal anti-NK-1.1 antibody and cell sorting. In normal adult mice, all of the splenic NK activity against YAC-1 cells was found in the NK-1.1+ fraction, whereas NK-1.1- cells were depleted of NK activity. The NK activity of sorted NK-1.1+ cells was enriched 15- to 30-fold over unfractionated spleen cells. Light and electron microscopic studies of purified NK-1.1+ cells showed a homogeneous population of cells, each containing one to four cytoplasmic granules. Mice whose bone marrow has been destroyed by chronic exposure to 17-beta-estradiol have very low NK activity. However, spleen cells of estradiol-treated mice contained a normal frequency of NK-1.1+ cells which bound to YAC-1 cells, but failed to lyse them even after purification and subsequent exposure to interferon-alpha/beta in vitro. It appears, therefore, that in the absence of intact bone marrow, NK-1.1+ cells may be arrested in a nonlytic and interferon-unresponsive state. Spleens of neonatal mice which have low NK activity were analyzed to ascertain whether immature NK-1.1+ cells, similar to those found in estradiol-treated mice, could be demonstrated. Spleens of 8- to 9-day-old mice also contained NK-1.1+ cells which had very low NK activity even after purification. Sorted NK-1.1+ cells were examined for cytotoxicity in mice whose NK activity was suppressed by pretreatment with Corynebacterium parvum (-15 days). In contrast to cells from estradiol-treated and neonatal mice, NK-1.1+ from mice treated with C. parvum had normal functional activity. Similarly, although NK activity of unfractionated bone marrow cells is low, sorted NK-1.1+ cells were greatly enriched for lytic activity. Thus, we conclude that cell sorting with monoclonal anti-NK-1.1 antibody provides a powerful tool for examining the mechanisms underlying various states of low NK activity, and there exist NK-1.1+, nonlytic, interferon-unresponsive cells which apparently require an intact marrow microenvironment for differentiation into mature, lytic NK cells.  相似文献   

14.
We have evaluated the NK cell antitumor activity in lymphotoxin (LT)-deficient mice. Both NK cell-mediated tumor rejection and protection from experimental metastases were significantly compromised in LT-alpha-deficient mice. Analysis of LT-alpha-deficient mice revealed that the absolute number of alphabetaTCR- NK1.1+ NK cells was reduced in bone marrow and thymus, but with overall proportional decreases in other hemopoietic organs. In addition, the antitumor potential of alphabetaTCR- NK1.1+ cells, as determined by their lytic capacity and perforin expression, was reduced 1.5- to 3-fold in LT-alpha-deficient mice, as compared with wild-type mice. Combined defects in NK cell development and effector function contribute to compromised NK cell antitumor function in LT-alpha-deficient mice.  相似文献   

15.
A model of neonatal autoimmune disease has been described recently in which an epitope-specific autoantibody to murine zona pellucida 3 induces severe ovarian disease in neonatal, but not adult, mice (neonatal AOD). The autoantibody forms immune complex with endogenous ovarian zona pellucida 3, and a pathogenic CD4(+) T cell response is triggered. The basis for the predominant neonatal susceptibility has not been clarified. In this study innate immunity, including neonatal NK cells, in neonatal AOD was investigated. Neonatal spleen contained readily detectable NK1.1(+)TCRVbeta(-), but not NK1.1(+)TCRVbeta(+), cells. Ab depletion of NK1.1(+)TCRVbeta(-) cells inhibited neonatal AOD development. Moreover, in adoptive transfer of neonatal AOD, recipient disease was ameliorated when either donor or recipient NK cells were depleted. Thus, NK cells operate in both induction and effector phases of the disease. IFN-gamma was produced by neonatal NK cells in vivo, and it may be important in neonatal AOD. Indeed, ovaries with neonatal AOD expressed high levels of IFN-gamma and TNF-alpha which correlated with disease severity, and the disease was inhibited by IFN-gamma or TNF-alpha Ab. Importantly, disease was enhanced by recombinant IFN-gamma, and treatment of T cell donors with IFN-gamma Ab also significantly reduced adoptive transfer of neonatal AOD. Finally, neonatal AOD was ameliorated in mice deficient in FcgammaRIII and was enhanced in FcgammaRIIB-deficient mice. We conclude that neonatal NK cells promote pathogenic T cell response at multiple stages during neonatal autoimmune disease pathogenesis. Also operative in neonatal AOD are other mediators of the innate system, including proinflammatory cytokines and FcgammaRIII signaling.  相似文献   

16.
NK cells are important for the clearance of tumors, parasites, and virus-infected cells. Thus, factors that control NK cell numbers and function are critical for the innate immune response. A subset of NK cells express the inhibitory killer cell lectin-like receptor G1 (KLRG1). In this study, we identify that KLRG1 expression is acquired during periods of NK cell division such as development and homeostatic proliferation. KLRG1(+) NK cells are mature in phenotype, and we show for the first time that these cells have a slower in vivo turnover rate, reduced proliferative response to IL-15, and poorer homeostatic expansion potential compared with mature NK cells lacking KLRG1. Transfer into lymphopenic recipients indicate that KLRG1(-) NK cells are precursors of KLRG1(+) NK cells and KLRG1 expression accumulates following cell division. Furthermore, KLRG1(+) NK cells represent a significantly greater proportion of NK cells in mice with enhanced NK cell numbers such as Cd45(-/-) mice. These data indicate that NK cells acquire KLRG1 on their surface during development, and this expression correlates with functional distinctions from other peripheral NK cells in vivo.  相似文献   

17.
The relative roles of interferon (IFN) and natural killer (NK) cells in herpes simplex virus type 1 (HSV-1) infection of mice were examined. Adoptive transfer of adult mouse leukocytes into 4- to 6-day-old suckling mice protected the recipients from HSV-1 infection, as judged by viral titers in the spleen 2 days postinfection. Protection was mediated by several classes of leukocytes, including those depleted of NK cell activity by antibody to asialo GM1 and those depleted of macrophages by size separation. Mice receiving these leukocytes produced significantly higher levels of IFN 6 hr postinfection (early IFN) than did HSV-1-infected mice not receiving donor leukocytes. Antibody to IFN, under conditions that blocked early but not late IFN synthesis, greatly enhanced HSV-1 synthesis in mice receiving leukocytes and completely removed the protective effect mediated by leukocytes. High doses of anti-asialo GM1 blocked both NK cell activity and early IFN production and resulted in high titers of HSV-1. This effect on virus synthesis was not seen if mice were given antibody 1 day postinfection. Lower doses of anti-asialo GM1, which still depleted NK cell activity but had no effect on early IFN production, did not enhance HSV-1 synthesis. Depletion of NK cell activity with a low dose of antibody had no effect on the reduced HSV-1 synthesis resulting from prophylactic IFN treatment or on the enhanced HSV-1 synthesis resulting from antibody to IFN treatment. Thus, resistance to acute HSV-1 infection in mice correlates with early IFN production but not with NK cell activity, suggesting that NK cells are not major mediators of natural resistance in this model and that the antiviral effect of IFN is not mediated by NK cells.  相似文献   

18.
19.
To assess the effects of chronic virus infection on NK cells, the related phenomena of interferon (IFN) production, NK cell activation, and resistance to tumor implants were studied in mice persistently infected with lymphocytic choriomeningitis virus (LCMV). NK cells from these LCMV-carrier mice displayed augmented killing of the NK-sensitive YAC-1 target cell. They did not lyse the more resistant targets L-929 and P815, whereas NK cells from acutely infected mice efficiently lysed all three cell types. The plasma from LCMV-carrier mice contained an antiviral substance identified as IFN type I, based on species specificity, virus nonspecificity, resistance to pH 2, and sensitivity to antibody to type I IFN. IFN titers in plasma from LCMV-carrier mice were 32 to 64 U/ml, about 20-fold less than those in acutely infected mice. Both the IFN and NK cell levels continuously remained elevated in the LCMV carrier mice up to at least 6 months of age. IFN is known to activate NK cells and to induce their blastogenesis in vivo. As determined by centrifugal elutriation, large NK blast-size cells were isolated from the spleens of acutely infected mice, but not from either normal or LCMV-carrier mice, suggesting augmented NK cell-mediated lysis in the absence of enhanced proliferation. Poly inosinic-cytidylic acid induced high levels of NK cell-mediated cytotoxicity and blastogenesis in both control and LCMV-carrier mice, but IFN was induced to lower levels in carriers as compared with controls. Coincidental with augmented NK cell activity, the LCMV-carrier mice rejected intravenously injected 125IUdR-labeled tumor cells more efficiently than did normal mice. Thus, LCMV carrier mice have low levels of type I IFN, moderately augmented NK cell activity lasting for at least 6 months, and increased resistance to tumor cell implants. This indicates that augmented NK cell-mediated cytotoxicity can be maintained in vivo over prolonged periods of time in the presence of chronic low-level IFN stimulation.  相似文献   

20.
Diversity of NK cell receptor repertoire in adult and neonatal mice.   总被引:4,自引:0,他引:4  
Murine NK cytotoxicity is regulated by two families of MHC class I-specific receptors, namely Ly49 and CD94/NKG2. We developed a single-cell RT-PCR method to analyze expression of all known Ly49 and NKG2A genes in individual NK cells and determined the receptor repertoires of NK cells from adult and neonatal (1-wk-old) C57BL/6 mice. In adult mouse NK cells, up to six different receptors were coexpressed in random combinations. Of 62 NK cells examined, 42 different patterns of receptor expression were observed. Most of them expressed at least one Ly49, whereas NKG2A was detected in 32% of the cells. Over 75% of them expressed Ly49C, I, or NKG2A, which are thought to recognize self-class I MHC (H-2b). Coexpression of multiple Ly49 receptors and NKG2A was stochastic. In contrast, very few neonatal NK cells expressed any Ly49, but almost 60% of them expressed NKG2A. These results demonstrate that adult NK cells are quite heterogeneous and have diverse receptor repertoires. They also suggest that the expression of NKG2A precedes Ly49 expression in NK cell ontogeny, and NKG2A is a major inhibitory receptor in neonatal NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号