首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biocatalytic preparation of acylated derivatives of flavonoid glycosides was performed using various immobilized lipases in two different ionic liquids, namely 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF(4)) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF(6)). The influence of various reaction parameters on the performance and the regioselectivity of the biocatalytic process was pointed out, using as model reaction the acylation of naringin and rutin with vinyl butyrate, catalyzed by immobilized Candida antarctica lipase at 60 degrees C. The biocatalytic modification of flavonoids strongly depended on the ionic liquid used, the molar ratio of substrates, as well as the acyl donor chain length. The highest conversion yield (about 65% after 96 h of incubation) was obtained with short chain acyl donors (up to four carbon atoms), at a relatively high molar ratio (10-15) in both ionic liquids used. The amount of monoacylated flavonoid derivatives produced in a single-step biocatalytic process in [bmim]BF(4) was up to 5.5 g/L for monoacylated rutin and 30 g/L for monoacylated naringin. The regioselectivity of the process was higher in [bmim]BF(4) than in [bmim]PF(6) or organic solvents. Reaction rates observed in ionic liquids were up to four times higher than those reported for organic media. The acylation of sugar moiety of rutin with various acyl donors affected its antioxidant potential towards both isolated LDL and total serum model in vitro. A significant increase of antioxidant activity was observed for rutin-4'-O-oleate.  相似文献   

2.
Enzymic synthesis of fructose esters was studied under reduced pressure. Different acyl donors were tested, and immobilized Candida antarctica lipase was used as biocatalyst. Influences of pressure, nature of the acyl donor, molar ratio sugar/acyl donor were investigated. Pressure had the greatest influence. At 200 mbar, more than 90% of fructose was acylated compared to 50% under atmospheric pressure. This is explained by the evaporation of reaction by-product (methanol or water) that shifted the equilibrium. C. antarctica lipase catalyzed sugar ester synthesis very efficiently using rapeseed oil as acyl donor. Moreover, synthesis performed with an equimolar mixture of both substrates gave promising results. Although the reaction rate was slower than synthesis performed with an excess of fatty acid, fructose monooleate concentration was still high (44 g l−1 instead of 56 g l−1) and the residual acyl donor concentration was very low. Downstream processes for the recovery of pure fructose monooleate were simplified in this case.  相似文献   

3.
A single-step acylation of rutin and naringin, catalyzed by immobilized Candida antarctica lipase B in 2-methyl-2-butanol, occurred preferentially on the primary hydroxyl group. Using palmitic methyl ester as acyl donor, the acylation rate of naringin was 10-fold higher than that of rutin. Under optimal conditions, i.e. a molar ratio acyl donor/naringin of 7:1 and 200 mbar, 92% naringin was acylated.  相似文献   

4.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

5.
Flavonoids rutin and naringin were acylated with fatty acids of medium carbon chain (with 8–12 carbon atoms on their molecule) in a reaction catalyzed by immobilized lipase from Candida antarctica (Novozyme) in various solvent systems. The reaction parameters affecting the acylation rate and the conversion of the enzymatic process, such as the nature of the organic solvent and acyl donor used, the water activity (aw) of the system, as well as the kinetic of the reaction have been investigated. In all cases studied, only flavonoid monoester is identified as the product, which indicates that this lipase-catalyzed esterification is regioselective. The enzymatic acylation of flavonoids seems to follow Michaelis–Menten kinetics.  相似文献   

6.
Several flavonoids (quercetin, hesperidin, rutin and esculin) were acylated with fatty acids using an immobilised lipase from Candida antarctica in 2-methyl-2-butanol at 60 °C. It appears that esculin with primary OH on the sugar part is the most reactive substrate. With palmitic acid as acyl donor, the conversion yields were of about 80, 71 and 38%, respectively, for esculin, rutin and hesperidin. No reaction was observed with aglycon flavonoid (quercetin). For a given flavonoid (rutin), the conversion yield increased from 42 to 76% when the carbon number of the fatty acids rose from C6 to C12. For fatty acids with higher carbon-chain length, both conversion yield and initial rate dropped slightly. Furthermore, compared to the saturated fatty acid (C18: 0), the unsaturated one (C18: 1) exhibited a lower reactivity. For all molecules studied 1H nuclear magnetic resonance (NMR) and 13C NMR analyses indicated that only flavonoid monoester was produced.  相似文献   

7.
A membrane-bound phospholipid : steryl glucoside acyltransferase from Solanum melongena leaves was partially purified and its specificity and molecular as well as kinetic properties were defined. Among the steryl glycosides tested (e.g. typical plant steryl glucosides, steryl galactosides and cholesteryl xyloside) the highest activity was found with cholesteryl glucoside, but some structurally related compounds such as sito- and stigmasteryl glucoside or galactoside as well as cholesteryl galactoside were also acylated, albeit at lower rates. The investigated enzyme was able to use all classes of phosphoglycerolipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol) as an acyl source for biosynthesis of acylated steryl glucoside. Among them 1,2-dimirystoylphosphatidylic acid appeared to be the best acyl donor. Apart from phosphoglycerolipids, 1,2-diacylglycerols were also used as acyl donor for steryl glucoside acylation, although at a distinctly lower rate. The acyl moiety was transferred from the C-1 position of phospholipid molecule. The investigated acyltransferase activity was stimulated by 2-mercaptoethanol, Triton X-100, 1-monoacylglycerols and inhibited in the presence of divalent cations such as Ca(2+), Mn(2+), Zn(2+) or Co(2+), some lipids (MDGD, ceramide), detergents (Tween 20, 40, 60 and 80, Tyloxapol, sodium deoxycholate) and high ionic strength.  相似文献   

8.
Aeropyrum pernix esterase (APE1547) was successfully used to catalyze the enantioselective transesterification of (R/S)-2-methyl-1-butanol in an ionic liquid (IL). Effects of various reaction conditions on the synthetic activity of the enzyme as well as enantioselectivity, including the type of IL, acyl donor, temperature, water activity, and substrate molar ratio were inverstigated. APE1547 showed good catalytic performance (activity > 0.8 μmol/min/mg, E > 25), and the enzyme-IL mixture was recycled five times with only a slight decrease in catalytic performance.  相似文献   

9.
In a reaction medium mixture of 9:11 t-BuOH and pyridine (v/v) the effect of fatty acid chain length (C-4-C-12) on C. antarctica lipase B (Novozym 435, EC 3.1.1.3) catalysed esterification was studied. alpha and beta maltose 6'-O-acyl esters in an anomeric molar ratio of 1.0:1.1 were synthesised independently of the chain length, but the initial specific reaction rate increased with decreasing chain length of the acyl donor. The product yield followed the same trend with a lauryl ester yield of 1.1% (mol/mol) and a butyl ester yield of 27.6% (mol/mol) after 24 h of reaction. With sucrose as the acyl acceptor the 6'-O-acyl and 6-O-acyl monoesters were formed with fatty acids of chain length C-4 and C-10 while the 6',6-O-acyl diester was formed only with butanoic acid (C-4:0) as acyl donor. The 6'-O-acyl and 6-O-acyl monoesters and the 6',6-O-acyl diester of butanoic acid were produced in a molar ratio of 1.0:0.5:0.2 and with decanoic acid (C-10:0) the 6'-O-acyl and 6-O-acyl monoesters were formed in the ratio of 1.0:0.3. The highest initial reaction rate and yield were obtained with the shortest chain length of the acyl donor. Initial reaction rates and ester yields were affected by the solubility of the disaccharide, with higher reaction rates and yields with maltose than with sucrose, while no formation of esters were observed with either cellobiose or lactose as acyl acceptors.  相似文献   

10.
Synthesis of cephalexin with immobilized penicillin acylase at high substrates concentration at an acyl donor to nucleophile molar ratio of 3 was comparatively evaluated in aqueous and ethylene glycol media using a statistical model. Variables under study were temperature, pH and enzyme to substrate ratio and their effects were evaluated on cephalexin yield, ratio of initial rates of cephalexin synthesis to phenylglycine methyl ester hydrolysis, volumetric and specific productivity of cephalexin synthesis, that were used as response parameters. Results obtained in both reaction media were modeled using surface of response methodology and optimal operation conditions were determined in terms of an objective function based on the above parameters. At very high substrates concentrations the use of organic co-solvents was not required to attain high yields and actually almost stoichiometric yields were obtained in a fully aqueous media with the advantages of higher productivities than in an organic co-solvent media and compliance with the principles of green chemistry.  相似文献   

11.
In this study, benzyl benzoate was successfully synthesized via enzymatic acylation using three immobilized enzymes as biocatalysts. Different acyl donors (benzoic acid and benzoic anhydride), operation regimes (batch, fed-batch), mixing modes (conventional mechanical stirring and ultrasound), process parameters (temperature, substrate molar ratio of acyl donor to acyl acceptor), presence or absence of solvents, enzyme amount and type were evaluated. Benzoic acid is a solid that is difficult to solubilize and, thus, was not efficient as acyl donor for the synthesis of benzyl benzoate. On the other hand, benzoic anhydride was very effective for the acylation of benzyl benzoate, and the presence of an excess of benzyl alcohol was essential to ensure the solute-solvent intermolecular attractions and good substrate solubilization, allowing the ester synthesis to be performed in the absence of organic solvents. The ultrasound was effective in increasing increase the initial reaction rate and the final conversion (88 %). However, the Lipozyme TL-IM and RM-IM supports were damaged, and the reuse was unfeasible. The batch and fed-batch approaches in conventional stirring ensured high conversions of 92 and 90 %, respectively, for batch (anhydride: alcohol 1:6) and fed-batch (1:3) using the Lipozyme TL-IM as biocatalyst. The controlled addition of the anhydride (fed-batch) allowed the reduction of alcohol molar ratio but decreased the reaction rates, and the maximum conversions were reached only after 24 h, while the batch approach had 92 % of conversion after 6 h. The yield of benzyl benzoate was high at 6 wt.% of enzyme, low temperature (50 °C), and simple reactor operation (batch). Results show the feasibility of the synthesis of benzyl benzoate via acylation using a green process that may be an alternative route to the chemical synthesis.  相似文献   

12.
A model system consisting of pure triolein and palmitic acid and LipozymeTM, an immobilized lipase (E.C. 3.1.1.3.). has been used to determine the effects of various reaction parameters on the reaction rate and the formation of by-products in the interesterification reaction. The goal was to minimize the level of diglycerides and eliminate trisaturated triglycerides at an endpoint chosen so that the results could be applied to the production of cocoa butter substitutes. The levels of diglycerides, which are essential reaction intermediates, and trisaturated glycerides, which are believed to be formed as a result of spontaneous acyl migration of mono- and diglyceride intermediates, were determined at a defined endpoint. A lag period was observed in which no tripalmitate was formed. The content of Lipozyme used was the most powerful factor in eliminating tripalmitate formation and reducing diglycerides; by using large quantities of Lipozyme, the reaction reached the endpoint before the tripalmitate formation became measurable and low levels of diglycerides were formed. The effects of varying the ratio of palmitic acid to triolein were investigated. A complex relationship between the ratio of substrate components emerged in which the diglyceride content increased with increasing triolein concentration and the tripalmitate content was lowest at a molar ratio of palmitic acid to triolein of 3.5. The reaction was run at 70, 80, and 90°C; best results were obtained at 70°. The water activity of the reaction was adjusted prior to catalysis and maintained during the reaction by equilibrating the reaction mixture and enzyme and running the reaction in an atmosphere of controlled water activity. A direct relationship between diglycerides and water activity was observed, and the level of tripalmitate formed corresponded to the time required to reach the endpoint. The reaction system was tested using ethyl palmitate instead of palmitic acid as acyl donor; the diglyceride content again increased with increasing water activity, but larger amounts of diglycerides were formed. Much shorter reaction times were required, with small quantities of tripalmitate formed.  相似文献   

13.
Natural prostaglandins (PG) F2alpha and E1 as well as (+)-cloprostenol were regioselectively 11-acylated using Novozym 435 as a catalyst and vinyl acetate as an acyl donor. Unlike the above compounds the 15-OH group of PGE2 was also acylated with a significant velocity under the same conditions. The enantiospecificity of the lipase-catalysed 11-acetylation of cloprostenol was established by separate treatment of(+)- and (-)-cloprostenols.  相似文献   

14.
Ehrlich ascites cells were cultured with 1-O-[3H]alkylglycero-3-phosphoethanolamine (1-[3H]alkyl-GPE) or 1-O-[3H]alkylglycero-3-phosphocholine (1-[3H]alkyl-GPC) to reveal the selective retention of polyunsaturated fatty acids at second position of ether-containing phospholipids. Although small percentages of the lysophospholipids were degraded into long-chain alcohol, both alkyllyso-GPE and -GPC were acylated at the rate of approximately 2 nmol/30 min per 10(7) cells. Alkylacylacetylglycerols were prepared from the acylated products by phospholipase C treatment, acetylation and TLC, and fractionated according to the degree of unsaturation by AgNO3-TLC. The distribution of the radioactivity among the subfractions indicated that both alkyllysophospholipids were mainly esterified by docosahexaenoic acid and to a somewhat lesser extent by arachidonic acid. The selectivity for docosahexaenoic acid in the esterification of 1-alkyl-GPE was much stronger than in that of 1-alkyl-GPC. Although acyl-CoA: 1-alkyl-glycerophosphoethanolamine acyltransferase activity of Ehrlich cell microsomes with arachidonoyl-CoA and docosahexaenoyl-CoA as acyl donors was negligible compared with the acyl-CoA:1-alkyl-glycerophosphocholine acyltransferase activity, a significant amount of 1-alkyl-GPE was acylated in the microsomes without exogenously added acyl-CoA. HPLC analysis revealed that docosahexaenoic acid and arachidonic acid were mainly esterified by the microsomal transferase. Acylation of 1-alkyl-GPC with docosahexaenoic acid and arachidonic acid was also observed in the absence of added acyl-CoA, but the activity was lower than that for 1-alkyl-GPE. Although the source of the acyl donor in the acylation has not been determined, the acylation is probably due to the direct transfer of acyl groups between intact phospholipids. The above results provided the first evidence that the lysophospholipid acyltransferase system including the transacylase activity participates in the selective retention of docosahexaenoic acid in intact cells and a cell free system.  相似文献   

15.
The integral membrane protein, sn-glycerol-3-phosphate acyltransferase, catalyzes the first committed step in phospholipid synthesis, and both acyl-CoA and acyl-acyl carrier protein can be used as acyl donors in this reaction. We found that spermidine increased the specific activity of the acyltransferase when either substrate was used as the acyl donor. Magnesium, as well as other cations, also increased acyltransferase activity but were not nearly as effective as spermidine. Two roles for spermidine in this reaction were deduced from our data. First, spermidine dramatically lowered the Km for glycerol 3-phosphate resulting in an overall rate enhancement when either substrate was used as the acyl donor. This effect was attributed to the modification of the acyl-transferase environment due to the binding of spermidine to membrane phospholipids. A second effect of spermidine was evident only when acyl-acyl carrier protein was used as substrate. Using this acyl donor, a pH optimum of 7.5 was found in the absence of spermidine, but in its presence, the pH optimum was shifted to 8.5. Between pH 7.5 and 8.5, palmitoyl-acyl carrier protein undergoes a conformational change to a more expanded, denatured state and its activity in the acyltransferase assay decreases dramatically. Spermidine restored the native conformation of palmitoyl-acyl carrier protein at pH 8.5, thus accounting for the majority of rate enhancement observed at elevated pH.  相似文献   

16.
Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.  相似文献   

17.
The influence of both polar group and acyl chain of lysophospholipids on the lysophosphatidylcholine: lysophosphatidylcholine acyltransferase from rabbit lung was studied. Both, transacylase and hydrolase activities of this enzyme, utilize selectively 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine when compared with 1-[9,10-3H2]palmitoyl-sn-glycero-3-phosphoethanolamine. Transacylase activity is more selective for lysophosphatidylcholine as acyl acceptor than as acyl donor. The amount of dipalmitoylphosphatidylcholine/min/mg protein synthesized from mixed lysophosphatidylcholine/lysophosphatidylethanolamine micelles does not change with increasing molar percentages of lysophosphatidylethanolamine in the mixture and is similar to that formed with pure lysophosphatidylcholine micelles. Transacylation reaction takes place preferentially with long and saturated acyl chains whereas hydrolysis reaction does more efficiently with longer acyl chains, independently of their insaturation degree.  相似文献   

18.
Recently we have demonstrated the advantage of solid- phase substrate pools mainly in equilibrium controlled protease-catalysed peptide syntheses. The extension of this approach to protease-catalysed acyl transfer reactions will be presented. The model reaction was systematically investigated according to both the influence of solid phases present in the system on enzyme activity as well as nucleophile concentration on peptide yield. The key parameter for obtaining high peptide yield via acyl transfer is the ratio between aminolysis and hydrolysis. We combined high nucleophile concentrations with solid-phase acyl donor pools. This approach enabled us to supply ester substrate and nucleophile in equimolar amounts in a high-density media without the addition of any organic solvent. Several multi-functional di- to tetrapeptides were obtained in moderate to high yields. ©1997 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
We have identified a protein in the soluble fraction from mouse cardiac tissue extracts which is rapidly and selectively acylated by myristyl CoA. This protein was partially purified by anion-exchange chromatography and gel filtration, and the acylation reaction was measured using [3H]myristyl CoA as substrate, followed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis to resolve [3H]fatty acyl polypeptides. The [3H]acyl protein migrated as heterogeneous bands corresponding to relative masses (MrS) of 42,000-51,000 under nonreducing conditions or as a single polypeptide of Mr 51,000 in the presence of reducing agents. Fatty acyl chain incorporation into protein was very rapid and already maximum after 30 s of incubation, whereas no acylation was detected using heat-denatured samples or when the reaction was stopped immediately after initiation. Only the acyl CoA served as fatty acyl chain donor. No incorporation into protein occurred when myristyl CoA was substituted by myristic acid, ATP, and CoA. A time-dependent reduction in the level of [3H]fatty acyl polypeptide was observed upon addition of excess unlabeled myristyl CoA, indicating the ability of the labeled acyl moiety of the protein to turn over during incubation. The saturated C10:0, C14:0, and C16:0 acyl CoAs were more effective to chase the label from the [3H]acyl polypeptide than the C18:0 and C18:1 acyl CoAs. These results provide evidence for a 51-kilodalton polypeptide which serves as an acceptor for fatty acyl chains and could represent an important intermediate in fatty acyl chain transfer reactions in cardiac tissue.  相似文献   

20.
Particulate enzyme preparations of cotton fibers catalyze the acylation of exogenous steryl glucoside to form acylated steryl glucoside. The acyl transferase involved in this reaction was solubilized by treatment of the membrane fractions with Triton X-100 and was partially purified by chromatography on DEAE-cellulose and gel filtration. This solubilized enzyme had an absolute requirement for Triton X-100 and phospholipid in order to catalyze the acylation of the steryl glucoside. The best phospholipid substrate was phosphatidylethanolamine but egg and soybean phosphatidylcholine were also active. The phospholipid was shown to function as an acyl donor by demonstrating that [14C]fatty acid from 14C-labeled phospholipid could be transferred to steryl-[3H]glucoside to form [14C,3H]acylated steryl glucoside. Saponification of this compound yielded [14C]fatty acid and steryl-[7H]glucoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号