首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

4.
Bacteriophage T4 RNase H belongs to a family of prokaryotic and eukaryotic nucleases that remove RNA primers from lagging strand fragments during DNA replication. Each enzyme has a flap endonuclease activity, cutting at or near the junction between single- and double-stranded DNA, and a 5'- to 3'-exonuclease, degrading both RNA.DNA and DNA.DNA duplexes. On model substrates for lagging strand synthesis, T4 RNase H functions as an exonuclease removing short oligonucleotides, rather than as an endonuclease removing longer flaps created by the advancing polymerase. The combined length of the DNA oligonucleotides released from each fragment ranges from 3 to 30 nucleotides, which corresponds to one round of processive degradation by T4 RNase H with 32 single-stranded DNA-binding protein present. Approximately 30 nucleotides are removed from each fragment during coupled leading and lagging strand synthesis with the complete T4 replication system. We conclude that the presence of 32 protein on the single-stranded DNA between lagging strand fragments guarantees that the nuclease will degrade processively, removing adjacent DNA as well as the RNA primers, and that the difference in the relative rates of synthesis and hydrolysis ensures that there is usually only a single round of degradation during each lagging strand cycle.  相似文献   

5.
We reported that plant ribosome inactivating proteins (RIP) have a unique DNA glycosylase activity that removes adenine from single-stranded DNA (Nicolas, E., Beggs, J. M., Haltiwanger, B. M., and Taraschi, T. F. (1998) J. Biol. Chem. 273, 17216-17220). In this investigation, we further characterized the interaction of the RIP gelonin with single-stranded oligonucleotides and investigated its activity on double-stranded oligonucleotides. At physiological pH, zinc and beta-mercaptoethanol stimulated the adenine DNA glycosylase activity of gelonin. Under these conditions, gelonin catalytically removed adenine from single-stranded DNA and, albeit to a lesser extent, from normal base pairs and mismatches in duplex DNA. Also unprecedented was the finding that activity on single-stranded and double-stranded oligonucleotides containing multiple adenines generated unstable products with several abasic sites, producing strand breakage and duplex melting, respectively. The results from competition experiments suggested similar interactions between gelonin's DNA-binding domain and oligonucleotides with and without adenine. A re-examination of the classification of gelonin as a DNA glycosylase/AP lyase using the borohydride trapping assay revealed that gelonin was similar to the DNA glycosylase MutY: both enzymes are monofunctional glycosylases, which are trappable to their DNA substrates. The k(cat) for the removal of adenine from single-stranded DNA was close to the values observed with multisubstrate DNA glycosylases, suggesting that the activity of RIPs on DNA may be physiologically relevant.  相似文献   

6.
To better understand the mechanism underlying halogenated pyrimidine-mediated cytotoxicity and radiosensitization in human tumor cells, a study was undertaken to determine the influence of unifilar (one DNA strand) versus bifilar (both DNA strands) substitution of thymidine by the halogenated bases 5-iodo-2'-deoxyuridine (IdUrd) and 5-bromo-2'-deoxyuridine (BrdUrd) in HT29 human colon cancer cells. Unifilar labeling was obtained by incubating cells with IdUrd or BrdUrd for one doubling time. Cells were incubated for at least three doublings to approximate bifilar substitution. Only IdUrd caused significant cytotoxicity, which correlated with incorporation into DNA. Both BrdUrd and IdUrd were potent radiosensitizers. Radiosensitization was linearly correlated with incorporation of both bases regardless of the number of strands in which thymidine was substituted. In contrast, the relationship between radiosensitization and DNA double-strand breakage was critically dependent in the case of IdUrd, but not for BrdUrd, on whether substitution was unifilar or bifilar. These findings suggest that incorporation is the best predictor of radiation sensitivity, and that the induction of DNA double-strand breaks alone does not account for radiosensitization mediated by halogenated pyrimidines in these human tumor cells.  相似文献   

7.
UL12 is a 5'- to 3'-exonuclease encoded by herpes simplex virus type 1 (HSV-1) which degrades single- and double-stranded DNA. UL12 and the single-strand DNA binding protein ICP8 mediate a strand exchange reaction. We found that ICP8 inhibited UL12 digestion of single-stranded DNA but stimulated digestion of double-stranded DNA threefold. The stimulatory effect of ICP8 was independent of a strand exchange reaction; furthermore, the effect was specific to ICP8, as it could not be reproduced by Escherichia coli single-stranded DNA binding protein. The effect of ICP8 on the rate of UL12 double-stranded DNA digestion is attributable to an increase in processivity in the presence of ICP8.  相似文献   

8.
We have identified two regions of non-random purine/pyrimidine strand asymmetry that were nearly identical in sequence in the 5' flanking (promoter) regions of the human cystic fibrosis transmembrane conductance regulator (CFTR) gene and the human MUC1 gene. These regions contain perfect mirror repeat elements, a sequence motif previously found to be associated with the formation of H-DNA conformations. In this report we demonstrate that a single-stranded non-B DNA conformation exists at low pH in supercoiled plasmids containing the similar mirror repeat elements, and that S1 nuclease digestion maps the single-stranded region to the position of the mirror repeats. In addition, we identify a nuclear protein of approximately 27 kD that binds to single-stranded oligonucleotides corresponding to the purine-rich strand of this region, but not to the pyrimidine-rich strands or to double-stranded oligonucleotides with corresponding purine/pyrimidine strand asymmetry.  相似文献   

9.
10.
Normal and ataxia telangiectasia (AT) human cells were exposed to 10(-5) mole/liter bromodeoxyuridine (BrdUrd) or iododeoxyuridine (IdUrd). High-pressure liquid chromatography (HPLC) measurements showed that up to 26 and 23% of the thymidine in DNA was substituted by BrdUrd in normal and AT cells, respectively. The incorporation of BrdUrd or IdUrd into DNA resulted in radiosensitization in normal and AT cells. When exposed to equal concentrations of BrdUrd and IdUrd, the BrdUrd caused greater radiosensitization than IdUrd in both normal and AT cells.  相似文献   

11.
Davis AP  Symington LS 《Genetics》2001,159(2):515-525
The yeast RAD52 gene is essential for homology-dependent repair of DNA double-strand breaks. In vitro, Rad52 binds to single- and double-stranded DNA and promotes annealing of complementary single-stranded DNA. Genetic studies indicate that the Rad52 and Rad59 proteins act in the same recombination pathway either as a complex or through overlapping functions. Here we demonstrate physical interaction between Rad52 and Rad59 using the yeast two-hybrid system and co-immunoprecipitation from yeast extracts. Purified Rad59 efficiently anneals complementary oligonucleotides and is able to overcome the inhibition to annealing imposed by replication protein A (RPA). Although Rad59 has strand-annealing activity by itself in vitro, this activity is insufficient to promote strand annealing in vivo in the absence of Rad52. The rfa1-D288Y allele partially suppresses the in vivo strand-annealing defect of rad52 mutants, but this is independent of RAD59. These results suggest that in vivo Rad59 is unable to compete with RPA for single-stranded DNA and therefore is unable to promote single-strand annealing. Instead, Rad59 appears to augment the activity of Rad52 in strand annealing.  相似文献   

12.
Mutants of Diplococcus pneumoniae that lack a membrane-localized DNAase are defective in transformation because entry of DNA into the cell is blocked. Such mutants still bind DNA on the outside of the cell. The bound DNA is double-stranded and its double-stranded molecular weight is unchanged. Its sedimentation behavior in alkali, however, shows that it has undergone single-strand breakage. The breaks are located randomly in both strands of the bound DNA at a mean separation of 2 × 106 daltons of single-stranded DNA. Both binding and single-strand breakage occur in the presence of EDTA. Single-strand breaks are similarly formed on binding of DNA to normally transformable cells in the presence of EDTA. The single-strand breaks appear to be a consequence of attachment. DNA may be bound to the cell surface at the point of breakage.A mutant that is partially blocked in entry also binds DNA mainly on the outside of the cell. In the presence of EDTA, DNA bound by this mutant undergoes only single-strand breaks. In the absence of EDTA, however, double-strand breaks occur, apparently as a result of the initiation of entry. It is possible that the double-strand breaks arise from additional single-strand breaks opposite those that occurred on binding. The double-strand breaks presumably result from action of the membrane DNAase as it begins to release oligonucleotides from one strand segment while drawing the complementary strand segment into the cell.  相似文献   

13.
14.
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1–2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.  相似文献   

15.
Structure of the hepatitis B virus genome.   总被引:7,自引:3,他引:4       下载免费PDF全文
The extent and position of the single-stranded gap in DNA molecules from Dane particles isolated from two donors of the adw serotype were determined by molecular hybridization and electron microscopic methods. The results showed that in each preparation more than 99% of the circular molecules are of uniform length and contain both single- and double-stranded regions. They confirmed that one end of the short strand is fixed with respect to the single EcoRI site within the molecule and to the nick in the long strand, but they also showed that although the position of the other end is variable, there is a preferred minimum length of about 650 to 700 nucleotides for the single-stranded region.  相似文献   

16.
M D Norris  B W Stewart 《FEBS letters》1988,228(2):223-227
The concentration of caffeine required to elute wholly single-stranded DNA from benzoylated DEAE-cellulose is proportional to the polynucleotide length. The use of benzoylated DEAE-cellulose chromatography for isolating and sizing single-stranded regions in double-stranded DNA has been examined using a series of hybrid molecules. Restriction fragments of the replicating form of bacteriophage luminal diameter X174 were hybridized to the intact 'plus' strand, thereby forming hybrids having single- and/or double-stranded regions in the kilobase range. A series of such hybrid preparations were subject to caffeine concentration gradient elution from benzoylated DEAE-cellulose. After logarithmic transformation, a linear relationship (R = 0.94) could be demonstrated between eluting caffeine concentration and single-stranded length, irrespective of the length of associated double-stranded regions or the location, within a given fragment, of unpaired nucleotides. Benzoylated DEAE-cellulose chromatography may therefore be used to separate and characterize, on a preparative scale, double-stranded DNA containing single-stranded regions.  相似文献   

17.
DFF40/CAD endonuclease is primarily responsible for internucleosomal DNA cleavage during the terminal stages of apoptosis. The nuclease specifically introduces DNA double strand breaks into chromatin substrates. Here we performed a detailed study on the specificity of the nuclease using synthetic single-stranded and double-stranded ribo- and deoxyribo-oligonucleotides as substrates. We have found that neither single-stranded DNA, single-stranded RNA, double-stranded RNA nor RNA–DNA heteroduplexes are cleaved by the DFF40/CAD nuclease. Noteworthy, all types of oligonucleotides that are not cleaved by the nuclease inhibit cleavage of double-stranded DNA. We have also observed that in cells undergoing apoptosis in vivo neither the activation of DFF40/CAD nor oligonucleosomal chromatin fragmentation was temporally correlated with either total cellular or nuclear RNA degradation. We conclude that DFF40/CAD is exclusively specific for double-stranded DNA. Jakub Hanus and Magdalena Kalinowska-Herok contributed equally to the work.  相似文献   

18.
DNA strand breaks induced in human CCRF-CEM cells by electrophilic chemicals (carcinogens/mutagens) can be readily quantitated via a facile alkaline unwinding assay. This procedure estimates the number of chemically induced DNA strand breaks on the basis of the percentage DNA converted from double-stranded to single-stranded form during an exposure to the alkaline unwinding conditions. The assay is based on the assumption that each strand break serves as a strand unwinding point during the alkaline denaturation. The extent of strand separation can be standardized with respect to the initial level of induced strand breaks by the use of X-rays, which produce known levels of DNA strand breaks per rad in mammalian cells. Subsequent to the alkaline exposure, the single- and double-stranded DNA were separated by use of thermostated hydroxylapatite columns (60 degrees C), and the DNA was quantitated via a fluorescence assay (Hoechst 33258 compound). A correlation was shown between mammalian DNA strand-breaking potential (as measured in this procedure) and the propensity of these chemicals to revert Salmonella typhimurium TA100.  相似文献   

19.
A proteolytic fragment of recA protein, missing about 15% of the protein at the C terminus, was found to promote assimilation of homologous single-stranded DNA into duplex DNA more efficiently than intact recA protein. This difference was not found if Escherichia coli single-stranded DNA binding protein was present. The ATPase activity of both intact recA protein and the fragment was identical. The difference in strand assimilation activity cannot be due to differences in single-stranded DNA affinity, since both the fragment and intact proteins bind to single-stranded DNA with nearly identical affinities. However, the fragment was found to bind double-stranded DNA more tightly and to aggregate more extensively than recA protein; both of these properties may be important in strand assimilation. Aggregation of the fragment was extensive in the presence of duplex DNA under the same condition where recA protein did not aggregate. The double-stranded DNA binding of both recA protein and the fragment responds to nucleotide cofactors in the same manner as single-stranded DNA binding, i.e. ADP weakens and ATP gamma S strengthens the association. The missing C-terminal region of recA protein includes a very acidic region that is homologous to other single-stranded DNA binding proteins and which has been implicated in DNA binding modulation. This C-terminal region may serve a similar function in recA protein, possibly inhibiting double-stranded DNA invasion. The possible role of the enhanced double-stranded DNA affinity of the fragment protein in the mechanism of strand assimilation is discussed.  相似文献   

20.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号