首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Airway epithelium acts as multifunctional site of response in the respiratory tract. Epithelial activity plays an important part in the pathophysiology of obstructive lung disease. In this study, we compare normal human epithelial cells from various levels of the respiratory tract in terms of their reactivity to pro-allergic and pro-inflammatory stimulation. Normal human nasal, bronchial and small airway epithelial cells were stimulated with IL-4 and IL-13. The expressions of the eotaxins IL-6 and CXCL8 were evaluated at the mRNA and protein levels. The effects of pre-treatment with IFN-γ on the cell reactivity were measured, and the responses to TNF-α, LPS and IFN-γ were evaluated. All of the studied primary cells expressed CCL26, IL-6 and IL-8 after IL-4 or IL-13 stimulation. IFN-γ pre-treatment resulted in decreased CCL26 and increased IL-6 expression in the nasal and small airway cells, but this effect was not observed in the bronchial cells. IL-6 and CXCL8 were produced in varying degrees by all of the epithelial primary cells in cultures stimulated with TNF-α, LPS or IFN-γ. We showed that epithelial cells from the various levels of the respiratory tract act in a united way, responding in a similar manner to stimulation with IL-4 and IL-13, showing similar reactivity to TNF-α and LPS, and giving an almost unified response to IFN-γ pre-stimulation.  相似文献   

3.
4.
5.
6.
7.
8.
Neutrophils are possibly involved in the pathogenesis of various lung diseases through the release of numerous mediators. In the present study, we studied the regulation of IL-8 gene induction and protein secretion in human blood neutrophils. Northern blot analysis revealed that LPS increased IL-8 mRNA levels in neutrophils, with a maximal fivefold increase by 2 h. IL-8 mRNA levels returned to baseline value within 12 h. In contrast, LPS-stimulated monocytes demonstrated a sustained increase of IL-8 mRNA levels for more than 24 h. TNF-α, IL-1β, and phorbol myristate acetate also increased IL-8 mRNA levels in neutrophils. Immunohistochemical analysis confirmed that IL-8 was localized within stimulated neutrophils. IL-8 secretion by neutrophils and monocytes was quantified using a specific ELISA for IL-8. Resting neutrophils secreted minimal IL-8 activity. However when cells were stimualted with LPS, TNF-α, or IL-1bT, neutrophils secreted IL-8. IL-8 secretion was most marked during the first 2 h after stimulation and decreased thereafter. In contrast, monocytes maintained a high rate of IL-8 secretion over 12 h. Although a single monocyte secreted 70-fold more IL-8 than did a single neutrophil after 4 h of incubation, the high abundance of neutrophils in peripheral blood made the neutrophil-secreted IL-8 more significant. During the first 2 h, neutrophils secreted ~40% of the IL-8 released by monocytes in the same volume of blood. This ratio decreased to 9% after 12 h. Neutrophil-secreted IL-8 may play an autocrine or paracrine role during the initial stage of inflammation. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Chronic obstructive pulmonary disease (COPD) is characterized by loss of elastic fibres from small airways and alveolar walls, with the decrease in elastin increasing with disease severity. It is unclear why there is a lack of repair of elastic fibres. We have examined fibroblasts cultured from lung tissue from subjects with or without COPD to determine if the secretory profile explains lack of tissue repair. In this study, fibroblasts were cultured from lung parenchyma of patients with mild COPD [Global initiative for chronic Obstructive Lung Disease (GOLD) 1, n= 5], moderate to severe COPD (GOLD 2-3, n= 12) and controls (non-COPD, n= 5). Measurements were made of proliferation, senescence-associated β-galactosidase-1, mRNA expression of IL-6, IL-8, MMP-1, tropoelastin and versican, and protein levels for IL-6, IL-8, PGE(2,) tropoelastin, insoluble elastin, and versican. GOLD 2-3 fibroblasts proliferated more slowly (P < 0.01), had higher levels of senescence-associated β-galactosidase-1 (P < 0.001) than controls and showed significant increases in mRNA and/or protein for IL-6 (P < 0.05), IL-8 (P < 0.01), MMP-1 (P < 0.05), PGE(2) (P < 0.05), versican (P < 0.05) and tropoelastin (P < 0.05). mRNA expression and/or protein levels of tropoelastin (P < 0.01), versican (P < 0.05), IL-6 (P < 0.05) and IL-8 (P < 0.05) were negatively correlated with FEV1% of predicted. Insoluble elastin was not increased. In summary, fibroblasts from moderate to severe COPD subjects display a secretory phenotype with up-regulation of inflammatory molecules including the matrix proteoglycan versican, and increased soluble, but not insoluble, elastin. Versican inhibits assembly of tropoelastin into insoluble elastin and we conclude that the pro-inflammatory phenotype of COPD fibroblasts is not compatible with repair of elastic fibres.  相似文献   

10.
The influence of macrophage (M)-CSF on the production of inflammatory mediators has been examined in murine peritoneal macrophages. Cultures of macrophages treated with up to 30,000 U/ml of human rM-CSF or with 10,000 U/ml of L929-derived M-CSF did not reveal either PGE2, IL-1, or IL-6 secretion. In contrast, LPS, which served as a positive control, stimulated production of significant levels of PGE2, IL-1, and IL-6. Furthermore, Northern blot analysis of macrophage RNA revealed a strong induction of IL-1 alpha and IL-6 mRNA by LPS but not by M-CSF. Conditioned medium from macrophage cultures treated with purified L929 or human rM-CSF in combination with LPS exhibited a significant reduction of IL-1 bioactivity as compared with an LPS challenge alone. To investigate the mechanism involved in this M-CSF-dependent reduction of IL-1 bioactivity, we measured IL-1 alpha gene expression. The addition of M-CSF to LPS-treated macrophages did not affect IL-1 alpha mRNA levels suggesting that M-CSF may regulate production of an IL-1 inhibitor. This hypothesis was shown to be valid because removal of IL-1 alpha from conditioned medium of LPS plus M-CSF-treated cells allowed the detection of a nondialyzable factor that blocked IL-1-dependent thymocyte proliferation. The inhibitor appeared to be specific because it did not inhibit IL-2 and TNF bioactivities. Furthermore, this IL-1 inhibitor, which binds to cells and not to IL-1, competed with the binding of radioactive IL-1 alpha or beta to EL-4.6.1 cells. The results demonstrate that M-CSF alone does not induce proinflammatory mediators and PGE2 as was previously published. The data also suggest that M-CSF may play a role in the down-regulation of inflammatory responses.  相似文献   

11.
Human gingival fibroblasts (HGFs), a predominant cell type in tooth-supporting structure, are presently recognized for their active role in the innate immune response. They produce a variety of inflammatory cytokines in response to microbial components such as LPS from the key periodontal pathogen, Porphyromonas gingivalis. In this study, we demonstrated that HGFs expressed mRNA of TLRs 1, 2, 3, 4, 5, 6, and 9, but not TLRs 7, 8, and 10. Stimulation of HGFs with highly purified TLR2 ligand (P. gingivalis LPS), TLR3 ligand (poly(I:C)), TLR4 ligand (Escherichia coli LPS), and TLR5 ligand (Salmonella typhimurium flagellin) led to expression of IL-8 and IDO. A potent TLR 9 ligand, CpG oligodeoxynucleotide 2006 had no effect, although HGFs showed a detectable TLR9 mRNA expression. No significant enhancement on IL-8 or IDO expression was observed when HGFs were stimulated with various combinations of TLR ligands. Surprisingly, the TLR9 ligand CpG oligodeoxynucleotide 2006 was able to specifically inhibit poly(I:C)-induced IL-8 and IDO expression. TNF-alpha enhanced TLR ligand-induced IL-8 production in HGFs, whereas IFN-gamma enhanced TLR ligand-induced IDO expression. HGF production of IDO in response to P. gingivalis LPS, IFN-gamma, or the two in combination inhibited T cell proliferation in MLRs. The observed T cell inhibition could be reversed by addition of either 1-methyl-dl-tryptophan or l-tryptophan. Our results suggest an important role of HGFs not only in orchestrating the innate immune response, but also in dampening potentially harmful hyperactive inflammation in periodontal tissue.  相似文献   

12.
The outcome of pathological process during sepsis caused by Gram-negative bacteria depends on the reaction of human blood cells to bacterial structural components, lipopolysaccharides (LPS). A general inflammatory response develops due to the increased production of proinflammatory cytokines. One of the current methods of prevention of inflammatory response is the inhibition of LPS binding to cellular receptors. We have studied the efficacy of antagonistic properties of LPS from Rhodobacter capsulatus on the production of TNF-α, IL-6, and IL-1β cytokines induced by toxic LPS from Salmonella typhimurium and Escherichia coli in human whole blood. LPS from R. capsulatus in concentrations of 0.1 and 1 μg/mL did not induce synthesis of TNF-α, IL-6, or IL-1β. Measurements of cytokine levels showed that LPS from R. capsulatus exerted a clear protective effect against toxic LPS. In particular, LPS from R. capsulatus fullly inhibited the production of TNF-α and IL-1β and significantly decreased the IL-6 production induced by LPS from S. typhimurium. Additionally, LPS from R. capsulatus antagonized the effects of LPS from E. coli, fully inhibiting the TNF-α production and decreasing the IL-6 and IL-1β levels by 60% and 70%, respectively. Thus, LPS from R. capsulatus acts as a potent antagonist of cell activation induced by toxic LPS.  相似文献   

13.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

14.

Introduction

We previously reported that IL-29, a newly described member of interferon (IFN) family, was overexpressed in blood and synovium of rheumatoid arthritis (RA) patients and triggered proinflammatory cytokine IL-6 and IL-8 mRNA expression in RA synovial fibroblasts (RA-FLS). This suggests that IL-29 has an important role in synovial inflammation. Toll-like receptors (TLRs) also activate RA-FLS to produce inflammatory mediators including tumor necrosis factor α (TNF-α) and IL-1β in RA-FLS. Since the TLR family plays an early role in the innate immune response and the subsequent induction of the adaptive immune response, we hypothesize that IL-29 interacts with TLRs in RA inflammation. This study aimed to investigate the effect of IL-29 on TLR-mediated proinflammatory cytokine production in RA-FLS.

Methods

The mRNA level of IL-29 receptors (IL-28Rα and IL-10R2) in RA-FLS was determined by semi-quantitative RT- PCR. IL-6 and IL-8 mRNA expressions in RA-FLS were evaluated by real-time PCR after pre-incubation with IL-29 and subsequent stimulation with peptidoglycan (PGN, TLR2 ligand), or polycytidylic acid (poly(I:C), TLR3 ligand), or lipopolysaccharide (LPS, TLR4 ligand) . The production of TLR2, 3, and 4 in RA-FLS after IL-29 stimulation was also assessed by real-time PCR and flow cytometry. IL-29 mRNA and protein expression in RA-FLS after stimulation with PGN, poly(I:C), or LPS were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively.

Results

The IL-29 receptor complex (IL-28Rα and IL-10R2) was identified in RA-FLS. IL-29 enhanced TLR-mediated IL-6 and IL-8 expression in RA-FLS. IL-29 upregulated expression of TLR2, 3 and 4 in RA-FLS. Exposure to PGN, poly(I:C) or LPS triggered IL-29 production by RA-FLS.

Conclusions

We show for the first time that IL-29 enhances TLR-induced proinflammatory cytokine production in RA-FLS via upregulation of TLRs.  相似文献   

15.
Huang Y  Li N  Liboni K  Neu J 《Cytokine》2003,22(3-4):77-83
Glutamine (Gln) supplementation has been shown to decrease production of pro-inflammatory cytokines by the human intestinal mucosa. The mechanism of this is poorly understood. We hypothesize that Gln down-regulates lipopolysaccharide (LPS)-stimulated pro-inflammatory cytokine production in Caco-2 cells by nuclear factor-kappa B (NF-kappaB). Caco-2 cells were incubated with different concentrations of Gln with or without methionine sulfoximine (MS, an inhibitor of glutamine synthetase) before stimulation with LPS. IL-6, IL-8, IL-10 and TNF-alpha protein and mRNA level were determined. NF-kappaB translocation was determined using an ELISA-based kit. IL-8 was the only detectable cytokine/chemokine. The largest amount of IL-8 was secreted by cells in the presence of MS with no Gln in the medium after exposure to LPS. LPS increased IL-8 production, peaking 10h after LPS administration. The addition of Gln (0.5 or 5.0mM) decreased IL-8 peptide and mRNA expression. LPS increased NF-kappaB nuclear translocation in the presence or absence of MS. Neither Gln nor MS altered NF-kappaB nuclear translocation. These results indicate that the lack of glutamine increases IL-8 production by Caco-2 cells after LPS stimulation. However, the glutamine-mediated decrease in LPS-stimulated IL-8 production is not associated with NF-kappaB p50 nuclear binding.  相似文献   

16.
Liver diseases are closely associated with elevated levels of interleukin-8 (IL-8), suggesting the ability to inhibit IL-8 production could enhance the treatment of liver diseases. Paeoniflorin is a major active constituent of dried Paeoniae Radix Alba root (Baishao in Chinese) which is widely used in China to treat liver diseases. We examined the effects and underlying mechanisms of paeoniflorin on IL-8 production in primary human hepatic sinusoidal endothelial cells (HHSECs). Concanavalin A (ConA) at 20 μg/mL produced a 5.2-fold increase in IL-8 mRNA by 8 h, and a 14.2-fold rise in IL-8 levels by 16 h. Inhibition of MEK (ERK kinase) and extracellular signal-regulated kinase (ERK) by PD98059 and U0126, or inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 blocked both ConA-induced IL-8 mRNA expression and IL-8 secretion. Paeoniflorin reduced ConA-induced IL-8 mRNA expression and IL-8 release by 57.9% and 52.8%, respectively, and also decreased ConA-stimulated phosphorylation of ERK1/2 and Akt, suggesting paeoniflorin inhibits IL-8 expression and release by inhibiting the ERK1/2 and Akt pathways. Combining paeoniflorin with U0126 or LY294002 at low doses showed supra-additive inhibition of not only phospho-ERK1/2 and phospho-Akt by 46.4% and 35.0%, but also IL-8 release by 42.4% and 36.1% and IL-8 mRNA expression by 43.5% and 31.8%, respectively. In conclusion, paeoniflorin most likely contributes to the therapy for liver disease by exerting anti-inflammatory effects on HHSECs through blocking IL-8 secretion via downregulation of ERK1/2 and Akt phosphorylation.  相似文献   

17.
18.
Interleukin-33 is a newly described member of the interleukin-1 family. Recent research suggests that IL-33 is increased in lungs and plays a critical role in chronic airway inflammation in cigarette smoke-induced chronic obstructive pulmonary disease (COPD) mice. To determine the role of IL-33 in systemic inflammation, we induced COPD mice models by passive cigarette smoking and identified the IL-33 expression in bronchial endothelial cells and peripheral blood mononuclear cells (PBMCs) of them. After isolation, PBMCs were cultured and stimulated in vitro. We measured expressions of interleukin-6 and interleukin-8 in PBMCs in different groups. The expression of IL-33 in bronchial endothelial cells and PBMCs of COPD mice were highly expressed. Stimulated by cigarette smoke extract (CSE), the expression of IL-6 and IL-8 were induced and enhanced by IL-33. PBMCs of COPD mice produced more IL-6 and IL-8 stimulated by CSE and IL-33. Expression of IL-6 and IL-8 were decreased when stimulated by IL-33 together with soluble ST2. The mRNA production of ST2 in IL-33 stimulated PBMCs was increased. Being pretreated with several kinds of MAPK inhibitors, the secretions of IL-6 and IL-8 in PBMCs did not decrease except for the p38 MAPK inhibitor. We found that IL-33 could induce and enhance the expression of IL-6 and IL-8 in PBMCs of COPD mice via p38 MAPK pathway, and it is a promoter of the IL-6 and IL-8 production in systemic inflammation in COPD mice.  相似文献   

19.
20.
目的研究过氧化物酶体增殖物激活的受体γ(PPARγ)激动剂罗格列酮对慢性阻塞性肺疾病(COPD)样大鼠肺组织、支气管肺泡灌洗液(BALF)中白介素-8(IL-8)、肿瘤坏死因子-α(TNF-α)和白介素-4(IL-4)的影响。方法被动吸烟和气管内滴注脂多糖(LPS)复制大鼠模型并随机分为模型组和罗格列酮治疗组。制备肺组织匀浆和支气管肺泡灌洗液,用放免法检测IL-8、TNF-α,用ELISA法测IL-4。结果与模型组比较罗格列酮治疗组大鼠肺组织IL-8、TNF-α含量降低而IL-4含量增加。结论 PPAR-γ通路激活对COPD中的炎症反应有负调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号