首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
同源建模在纤维素酶分子改造中的应用   总被引:2,自引:0,他引:2  
同源建模技术(homology modeling)给蛋白质的研究带来了新的希望,在理论上解决了结构预测和功能分析以及蛋白质工程实施方面所面临的难题.纤维素酶(cellulase)是能水解纤维素生成纤维二糖和葡萄糖的一组酶的总称.对纤维素酶的研究目前已经发展到结构功能分析、理性设计等方面.由于实验方法不能胜任全部纤维素酶结构的测定工作,故以计算机为依托的同源建模技术便发挥着重要作用,它在纤维素酶分子改造中的应用主要有:家族同源分析、研究功能氨基酸的作用机理、基于分子结构的理性设计、预测突变体结构和新功能等.随着同源建模技术自身的不断完善,以及分子对接、分子动力学模拟等技术的发展,计算机模拟技术将在酶分子的改造过程中显示出巨大的生命力.  相似文献   

2.
碳水化合物活性酶数据库( CAZy)是关于能够合成或者分解复杂碳水化合物和糖复合物的酶类的一个数据库资源,其基于蛋白质结构域中的氨基酸序列相似性,将碳水化合物活性酶类归入不同蛋白质家族。 CAZy数据库中包含了碳水化合物酶类的物种来源、酶功能EC分类、基因序列、蛋白质序列及其结构等信息。而随着宏基因组学技术的快速发展,CAZy数据库中家族内序列数据量剧增,这为家族内进一步进行亚家族分类奠定了基础;而蛋白质家族内新一层精细分类的引入可提高亚家族中酶分子功能预测的准确度,进而可指导酶分子理性设计来提高特定功能酶组分设计的成功概率,从而推动生物质转化产业的发展。  相似文献   

3.
碳水化合物活性酶数据库(CAZy)是关于能够合成或者分解复杂碳水化合物和糖复合物的酶类的一个数据库资源,其基于蛋白质结构域中的氨基酸序列相似性,将碳水化合物活性酶类归入不同蛋白质家族。CAZy数据库中包含了碳水化合物酶类的物种来源、酶功能EC分类、基因序列、蛋白质序列及其结构等信息。而随着宏基因组学技术的快速发展,CAZy数据库中家族内序列数据量剧增,这为家族内进一步进行亚家族分类奠定了基础;而蛋白质家族内新一层精细分类的引入可提高亚家族中酶分子功能预测的准确度,进而可指导酶分子理性设计来提高特定功能酶组分设计的成功概率,从而推动生物质转化产业的发展。  相似文献   

4.
工业催化用酶已经成为现代生物制造技术的核心"芯片"。不断设计和研发新型高效的酶催化剂是发展工业生物技术的关键。工业催化剂创新设计的科学基础是对酶与底物的相互作用、结构与功能关系及其调控机制的深入剖析。随着生物信息学和智能计算技术的发展,可以通过计算的方法解析酶的催化反应机理,进而对其结构的特定区域进行理性重构,实现酶催化性能的定向设计与改造,促进其工业应用。聚焦工业酶结构-功能关系解析的计算模拟和理性设计,已成为工业酶高效创制改造不可或缺的关键技术。本文就各种计算方法和设计策略以及未来发展趋势进行简要介绍和讨论。  相似文献   

5.
糖基化能够增加化合物的结构多样性,有效改善水溶性、药理活性和生物利用度,对植物天然产物的药物开发至关重要。UDP-糖基转移酶(UGTs)能够催化糖基从活化的核苷酸糖供体转移到受体形成糖苷键,植物中天然产物的糖基化修饰主要通过UGTs实现。但是大多数天然UGTs的催化活性、稳定性和底物特异性较低,难以满足工业用酶的要求,限制了它们的工业化应用。近年来,通过分子改造技术改进天然UGTs的催化特性取得了突破性的研究进展。为此,概述了植物源UGTs的挖掘与表征、三维结构和催化机制,归纳了UGTs分子改造的思路和方法,包括理性设计和定向进化,重点介绍了结构域替换、序列保守分析和结构分析与定点突变的结合,总结了定向进化中的高通量筛选方法,为植物天然产物酶法糖基化的工业应用提供了参考和借鉴。  相似文献   

6.
孙瑨原  朱彤  李涛  崔颖璐  吴边 《微生物学报》2021,61(12):3783-3798
可数据化是现代生命科学研究,尤其是合成生物学的一项关键特性。酶作为生命体内催化生化反应的关键分子,其数据化对推动生命科学的基础研究和实际应用都有重要意义。当下商品化的酶大都来源于微生物,建立微生物酶资源数据库不仅可以为酶的分类提供标准参考,还可以指导新型催化元件的挖掘、改造与从头设计。本综述对国际上已有的酶资源数据库建设与发展作了简要介绍,并对基于数据库的微生物酶资源利用作出展望。  相似文献   

7.
功能酶被广泛应用于食品、化工、医药等领域,但却容易受高温环境限制,导致催化效率降低。以分子改造为目的的蛋白质工程技术是解决这一问题的关键环节,其能够对酶结构和功能进行改造,获得热稳定性好的工业酶。传统的定向进化方法只能依靠随机突变进行人工筛选,具有效率低、针对性差等缺点;理性设计作为酶热稳定性改造的主要方法,可借助各种计算机程序和软件预测潜在突变位点,但其要求对酶的催化机制、热稳定性机制有深入了解。对于大多数天然酶而言,酶的序列和晶体结构是最容易获取的信息,也是预测功能的重要基础。从酶的序列和晶体结构入手,重点介绍了共识突变、基于序列偏好性的突变、截短柔性区域、优化分子内相互作用力、刚化催化活性区域及计算机辅助筛选柔性位点等常用策略,这些策略具有筛选效率高、改造准确性高、实用性强等优点。结合多种酶的热稳定性改造案例进行分析,旨在为不同酶的改造策略选择提供有效参考,同时也为工业酶的耐热性研究提供理论支持。  相似文献   

8.
GH79家族的糖苷水解酶在碳水化合物改性、细胞免疫识别和信号传导等方面具有广泛的生理活性和重要的应用前景。然而,目前GH79家族的多样性催化机理仍不清楚,识别底物的结构基础和分子机制尚不清晰。本文总结了近几年GH79家族的研究进展,系统分析了GH79家族酶的来源与分布,通过对酶的序列特征、分子进化关系、蛋白结构解析等方面进行深入阐述,旨在为后续的GH79家族的蛋白质工程和功能催化机制的解析奠定基础。  相似文献   

9.
细菌几丁质酶结构、功能及分子设计的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
几丁质是仅次于纤维素的第二大天然多糖,由N-乙酰-D-氨基葡萄糖聚合而成,具有重要的应用价值。自然界中几丁质可被细菌高效降解。细菌可分泌多种几丁质降解酶类,主要分布在GH18家族和GH19家族中。细菌中几丁质降解酶基因存在明显的基因扩增及多结构域组合现象,不同家族、不同作用模式的几丁质酶系协同作用打破复杂的抗降解屏障,完成结晶几丁质的高效降解。因此,深入分析细菌几丁质酶结构与功能,对几丁质高效降解与高值转化应用具有重要意义。本文介绍了细菌几丁质酶的分类、结构特点与催化作用机制;总结了不同细菌胞外几丁质降解酶系的协同降解模式;针对几丁质酶家族分子改造的研究进展,展望了以结构生物信息学及大数据深度学习为基础的蛋白质工程设计策略在今后改造中的作用,为几丁质酶的设计与理性改造提供新的视角与思路。  相似文献   

10.
褐藻胶是由β-D-甘露糖醛酸(M)以及α-L-古罗糖醛酸(G)2种单体组成的酸性多糖。褐藻胶裂解酶作为多糖裂解酶的一种,可以温和高效地将褐藻胶降解为褐藻寡糖,并用于食品、医药和农业领域。然而天然来源的褐藻胶裂解酶通常存在活性不高、催化效率低以及热稳定性差等缺点,在一定程度上限制了其工业化应用潜力。近年来分子改造策略已经开始大量应用于褐藻胶裂解酶,使得褐藻胶裂解酶的应用性能得到极大提升。本文对已报道的褐藻胶裂解酶结构与催化机制进行总结,对改善热稳定性、提高催化效率、改变底物分布等性质的褐藻胶裂解酶分子改造策略如理性设计、定向进化、结构域截短与重组等进行系统分析与综述,并展望了未来褐藻胶裂解酶分子改造的发展方向。  相似文献   

11.
酶分子在长期进化过程中形成一系列氨基酸残基组成的活性架构,参与底物的识别、结合与催化过程,而活性架构中相应氨基酸残基是如何影响酶分子结合底物的能力,进而影响酶分子的催化效率,一直是酶分子理性改造研究的热点.利用亲和电泳技术,可以快速展示内切纤维素酶Tr Cel12A和木聚糖酶Tl Xyn A活性架构中不同突变体的催化活性及其迁移率的变化,进而通过在不同底物浓度凝胶中蛋白质相对迁移率变化程度的定量回归分析,发现由氨基酸单点突变导致蛋白质迁移率的相对变化,可以定量表征酶分子突变前后结合底物能力的变化.亲和电泳测定的有效阻滞常数Kb值与等温滴定量热法和荧光光谱法测定的相关参数比较具有明显相关性.由于亲和电泳技术在测定酶分子与底物的结合能力时具有简便、快速、灵敏的特点,因而可作为常规生化实验室常规普筛技术来检测突变文库中系列突变体导致结合力的变化.  相似文献   

12.
Fold recognition results allocate catalytic triose phosphate isomerase (TIM) barrels to seven previously unassigned glycoside hydrolase (GH) families, numbers 29, 44, 50, 71, 84, 85 and 89, enabling prediction of catalytic residues. Modelling of GH family 50 suggests that it may be the common evolutionary ancestor of families 42 and 14. TIM barrels now comprise the catalytic domains of more than half of the assigned GH families, and catalyse a much larger variety of GH reactions than any other catalytic domain architecture. Only 327 GH sequences still have no structurally identified catalytic domain.  相似文献   

13.
14.
Rigden DJ  Franco OL 《FEBS letters》2002,530(1-3):225-232
X-ray crystallography and bioinformatics studies reveal a tendency for the right-handed β-helix domain architecture to be associated with carbohydrate binding proteins. Here we demonstrate the presence of catalytic β-helix domains in glycoside hydrolase (GH) families 49, 55 and 87 and provide evidence for their sharing a common evolutionary ancestor with two structurally characterized GH families, numbers 28 and 82. This domain assignment helps assign catalytic residues to each family. Further analysis of domain architecture reveals the association of carbohydrate binding modules with catalytic GH β-helices, as well as an unexpected pair of β-helix domains in GH family 55.  相似文献   

15.
Much of what is currently known about the structure, properties and biochemical activities of glycosyl hydrolases (GHs) has resulted from detailed studies of microbial enzymes. Conversely, such information is sparse in the plant GH literature, where the focus has traditionally been on studying expression and biological function. However, the current resurgence of interest in lignocellulosic biofuels is catalyzing new interest in this field, and recent reports suggest that some plant GH families have more in common with their microbial counterparts than was previously suspected. The repertoires of plant GHs, with their associated catalytic activities and polysaccharide binding affinities, may have valuable applications in modifying plant cell wall architecture and in the development and characterization of new bioenergy feedstocks.  相似文献   

16.
Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.  相似文献   

17.
S Janeček  A Kuchtová 《FEBS letters》2012,586(19):3360-3366
The glycoside hydrolase family 119 (GH119) contains the α-amylase from Bacillus circulans and five other hypothetical proteins. Until now, nothing has been reported on the catalytic residues and catalytic-domain fold of GH119. Based on a detailed in silico analysis involving sequence comparison in combination with BLAST searches and structural modelling, an unambiguous relationship was revealed between the families GH119 and GH57. This includes sharing the catalytic residues, i.e. Glu231 and Asp373 as catalytic nucleophile and proton donor, respectively, in the predicted catalytic (β/α)7-barrel domain of GH119 B. circulans α-amylase. The GH57 and GH119 families may thus define a new CAZy clan.  相似文献   

18.
The breakdown of β-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of β-mannanases. In this work, a two-domain β-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/β)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.  相似文献   

19.
The 1.7A resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved beta-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号