首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It has been shown that efficient functioning of photosynthesis and respiration in the cyanobacterium Synechocystis PCC 6803 requires the presence of either cytochrome c6 or plastocyanin. In order to check whether the blue copper protein plastocyanin can act as electron donor to cytochrome c oxidase, we investigated the intermolecular electron transfer kinetics between plastocyanin and the soluble CuA domain (i.e. the donor binding and electron entry site) of subunit II of the aa3-type cytochrome c oxidase from Synechocystis. Both copper proteins were expressed heterologously in Escherichia coli. The forward and the reverse electron transfer reactions were studied yielding apparent bimolecular rate constants of (5.1+/-0.2) x 10(4) M(-1) s(-1) and (8.5+/-0.4) x 10(5) M(-1) s(-1), respectively (20 mM phosphate buffer, pH 7). This corresponds to an apparent equilibrium constant of 0.06 in the physiological direction (reduction of CuA), which is similar to Keq values calculated for the reaction between c-type cytochromes and the soluble fragments of other CuA domains. The potential physiological role of plastocyanin in cyanobacterial respiration is discussed.  相似文献   

2.
To investigate the contribution of tryptophan-121 (Trp121) residue to the structure and function of soluble CuA domain of cytochrome c oxidase, three mutant proteins, Trp121Tyr, Trp121Leu and Trp121-deleted mutant of the soluble domain of Paracoccus versutus cytochrome c oxidase, were constructed and expressed in Escherichia coli BL21 (DE3). Optical spectral studies showed that both the coordination structure of the CuA center and the secondary structure of the protein were changed significantly in the Leu substitution and deletion mutants of Trp121. Their electron transfer activity with cytochrome c was inhibited severely, as shown in stopped-flow kinetic studies. However, the CuA center can be reconstructed in the Trp121Tyr mutant although its stability decreases compared with the wild-type protein. This mutant keeps the same secondary structure as the wild-type protein, but can only transfer electrons with cytochrome c at a rate of one-seventh-fold. Based on the information on the structure, we also investigated and analyzed the possible factors that affect electron transfer. It appears that the aromatic ring, the size of the side chain and the hydrogen bonding ability of the Trp121 are crucial to the structure and function of the soluble CuA domain.  相似文献   

3.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

4.
The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.  相似文献   

5.
The electron donor for periplasmic chlorate reductase of Ideonella dechloratans has been suggested to be a soluble cytochrome c. We describe here the purification of the 9-kDa periplasmic cytochrome c, denoted cytochrome c-Id1, and demonstrate its ability to serve as an electron donor for purified chlorate reductase. The reaction rate was found to be linearly dependent on the cytochrome c concentration in the range of 0.6-4 μM. A route for electron transport involving a soluble cytochrome c is similar to that found for other periplasmic oxidoreductases of the dimethyl sulfoxide reductase family, but different from that suggested for the (per)chlorate reductase of Dechloromonas species.  相似文献   

6.
When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.  相似文献   

7.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

8.
We have examined the steady-state redox behavior of cytochrome c (Fec), Fea, and CuA of cytochrome c oxidase during steady-state turnover in intact rat liver mitochondria under coupled and uncoupled conditions. Ascorbate was used as the reductant and TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine) as the redox mediator. After elimination of spectroscopic interference from the oxidized form of TMPD, we found that Fea remains significantly more oxidized than previously thought. During coupled turnover, CuA always appears to be close to redox equilibrium with Fec. By increasing the amount of TMPD, both centers can be driven to fairly high levels of reduction while Fea remains relatively oxidized. The reduction level at Fea is close to a linear function of the enzyme turnover rate, but the levels at Fec and CuA do not keep pace with enzyme turnover. This behavior can be explained in terms of a redox equilibrium among Fec, CuA, and Fea, where Fea is the electron donor to the oxygen reduction site, but only if Fea has an effective Em (redox midpoint potential) of 195 mV. This is too low to be accounted for on the basis of nonturnover measurements and the effects of the membrane potential. However, if there is no equilibrium, the internal CuA----Fea electron-transfer rate constant must be slow in the time average (about 200 s-1). Other factors which might contribute to such a low Em are discussed. In the presence of uncoupler, this situation changes dramatically. Both Fec and CuA are much less reduced; within the resolution of our measurements (about 10%), we were unable to measure any reduction of CuA. Fea and CuA remain too oxidized to be in redox equilibrium with Fec during steady-state turnover. Furthermore, our results indicate that, in the uncoupled system, the (time-averaged) internal electron-transfer rate constants in cytochrome oxidase must be of the order of 2500 s-1 or higher. When turnover is slowed by azide, the relative redox levels at Fea and Fec are much closer to those predicted from nonturnover measurements. In presence of uncouplers, Fea is always more reduced than Fec, but in the absence of uncouplers, the two centers track together. Unlike the uninhibited, coupled system, the redox behavior here is consistent with the known effect of the electrical membrane potential on electron distribution in the enzyme. Interestingly, in these circumstances (azide and uncoupler present), Fea behaves as if it were no longer the kinetically controlling electron donor to the bimetallic center.  相似文献   

9.
P E Morin  E Freire 《Biochemistry》1991,30(34):8494-8500
The kinetic and thermodynamic parameters associated with the enzymatic reaction of yeast cytochrome c oxidase with its biological substrate, ferrocytochrome c, have been measured by using a titration microcalorimeter to monitor directly the rate of heat production or absorption as a function of time. This technique has allowed determination of both the energetics and the kinetics of the reaction under a variety of conditions within a single experiment. Experiments performed in buffer systems of varying ionization enthalpies allow determination of the net number of protons absorbed or released during the course of the reaction. For cytochrome c oxidase the intrinsic enthalpy of reaction was determined to be -16.5 kcal/mol with one (0.96) proton consumed for each ferrocytochrome c molecule oxidized. Activity measurements at salt concentrations ranging from 0 to 200 mM KCl in the presence of 10 mM potassium phosphate, pH 7.40, and 0.5 mM EDTA display a biphasic dependence of the electron transferase activity upon ionic strength with a peak activity observed near 50 mM KCl. The ionic strength dependence was similar for both detergent-solubilized and membrane-reconstituted cytochrome c oxidase. Despite the large ionic strength dependence of the kinetic parameters, the enthalpy measured for the reaction was found to be independent of ionic strength. Additional experiments involving direct transfer of the enzyme from low to high salt conditions produced negligible enthalpy changes that remained constant within experimental error throughout the salt concentrations studied (0-200 mM KCl). These results indicate that the salt effect on the enzyme activity is of entropic origin and further suggest the absence of a major conformational change in the enzyme due to changes in ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The role of periplasmic cytochrome c in the denitrification pathway has been investigated using a wild-type and/or a cytochrome c deficient strain of Paracoccus denitrificans. The reconstitution experiments with the isolated proteins showed that bacterial cytochrome c-550 restored the electron transport from the cytoplasmic membrane to soluble nitrite reductase (cytochrome cd1). In response to decreased aeration lasting 3 h, the HUUG25 strain synthesized nitrous-oxide reductase significantly starved of electrons from the respiratory chain and only very small amounts of soluble cytochrome c. The membrane-bound part of the respiratory chain catalyzing the reduction of soluble cytochrome c resembled an autologous region in wild-type cells kinetically and by its sensitivity to antimycin. In the periplasmic fraction obtained from anaerobically grown wild-type cells N2O caused the reoxidation of endogenous cytochrome(s) c previously reduced by N,N,N',N' tetramethyl-p-phenylenediamine plus ascorbate. All these results indicate the involvement of soluble cytochrome(s) c as the electron donor(s) for the reduction of NO2- and N2O in the periplasmic space of cells.  相似文献   

11.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

12.
Cytochrome-c oxidase is the terminal enzyme in the respiratory chains of mitochondria and many bacteria and catalyzes the formation of water by reduction of dioxygen. The first step in the cytochrome oxidase reaction is the bimolecular electron transfer from cytochrome c to the homobinuclear mixed-valence CuA center of subunit II. In Thermus thermophilus a soluble cytochrome c552 acts as the electron donor to ba3 cytochrome-c oxidase, an interaction believed to be mainly hydrophobic. In Paracoccus denitrificans, electrostatic interactions appear to play a major role in the electron transfer process from the membrane-spanning cytochrome c552. In the present study, soluble fragments of the CuA domains and their respective cytochrome c electron donors were analyzed by stopped-flow spectroscopy to further characterize the interaction modes. The forward and the reverse electron transfer reactions were studied as a function of ionic strength and temperature, in all cases yielding monoexponential time-dependent reaction profiles in either direction. From the apparent second-order rate constants, equilibrium constants were calculated, with values of 4.8 and of 0.19, for the T. thermophilus and P. denitrificans c552 and CuA couples, respectively. Ionic strength strongly affects the electron transfer reaction in P. denitrificans indicating that about five charges on the protein interfaces control the interaction, when analyzed according to the Br?nsted equation, whereas in the T. thermophilus only 0.5 charges are involved. Overall the results indicate that the soluble CuA domains are excellent models for the initial electron transfer processes in cytochrome-c oxidases.  相似文献   

13.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 muM and 5 muM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 muM, and 70% by 10 muM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

14.
15.
(1) Using the pulse-radiolysis and stopped-flow techniques, the reactions of iron-free (porphyrin) cytochrome c and native cytochrome c with cytochrome aa3 were investigated. The porphyrin cytochrome c anion radical (generated by reduction of porphyrin cytochrome c by the hydrated electron) can transfer its electron to cytochrome aa3. The bimolecular rate constant for this reaction is 2 x 10(7) M-1 . s-1 (5 mM potassium phosphate, 0.5% Tween 20, pH 7.0, 20 degrees C). (2) The ionic strength dependence of the cytochrome c-cytochrome aa3 interaction was measured in the ionic strength range between 40 and 120 mM. At ionic strengths below 30 mM, a cytochrome c-cytochrome aa3 complex is formed in which cytochrome c is no longer reducible by the hydrated electron. A method is described by which the contributions of electrostatic forces to the reaction rate can be determined. (3) Using the stopped-flow technique, the effect of the dielectric constant (epsilon) of the reaction medium on the reaction of cytochrome C with cytochrome aa3 was investigated. With increasing epsilon the second-order rate constant decreased.  相似文献   

16.
Human cytochrome c oxidase was purified in a fully active form from heart and skeletal muscle. The enzyme was selectively solubilised with octylglucoside and KCl from submitochondrial particles followed by ammonium sulphate fractionation. The presteady-state and steady-state kinetic properties of the human cytochrome c oxidase preparations with either human cytochrome c or horse cytochrome c were studied spectrophotometrically and compared with those of bovine heart cytochrome c oxidase. The interaction between human cytochrome c and human cytochrome c oxidase proved to be highly specific. It is proposed that for efficient electron transfer to occur, a conformational change in the complex is required, thereby shifting the initially unfavourable redox equilibrium. The very slow presteady-state reaction between human cytochrome c oxidase and horse cytochrome c suggests that, in this case, the conformational change does not occur. The proposed model was also used to explain the steady-state kinetic parameters under various conditions. At high ionic strength (I = 200 mM, pH 7.4), the kcat was highly dependent on the type of oxidase and it is proposed that the internal electron transfer is the rate-limiting step. The kcat value of the 'high-affinity' phase, observed at low ionic strength (I = 18 mM, pH 7.4), was determined by the cytochrome c/cytochrome c oxidase combination applied, whereas the Km was highly dependent only on the type of cytochrome c used. Our results suggest that, depending on the cytochrome c/cytochrome c oxidase combination, either the dissociation of ferricytochrome c or the internal electron transfer is the rate-limiting step in the 'high-affinity' phase at low ionic strength. The 'low-affinity' kcat value was not only determined by the type of oxidase used, but also by the type of cytochrome c. It is proposed that the internal electron-transfer rate of the 'low-affinity' reaction is enhanced by the binding of a second molecule of cytochrome c.  相似文献   

17.
Cysteine alone reduces horse heart cytochrome c very slowly (k approximately or equal too 1.0 M-1s-1) with a rate constant virtually identical in high and low ionic strength buffers. Copper catalyzes this reaction increasing the rate by a factor of 10(5) in 50 mM phosphate and by a factor of 10(6) in 10mM Tris buffers. When ferricytochrome c and cysteine are mixed in an oxygen electrode a "burst" of oxygen uptake is seen, the decline in which parallels the reduction of cytochrome c. When cytochrome oxidase is added to such a mixture two routes of electron transfer to oxygen exist: enzymatic and ferricytochrome c dependent nonenzymatic. Both processes are sensitive to cyanide, but azide inhibits only the authentic cytochrome c oxidase catalyzed process and BCS the ferricytochrome c stimulated reaction.  相似文献   

18.
Plastocyanin and cytochrome c6 are two small soluble electron carriers located in the intrathylacoidal space of cyanobacteria. Although their role as electron shuttle between the cytochrome b6f and photosystem I complexes in the photosynthetic pathway is well established, their participation in the respiratory electron transport chain as donors to the terminal oxidase is still under debate. Here, we present the first time-resolved analysis showing that both cytochrome c6 and plastocyanin can be efficiently oxidized by the aa3 type cytochrome c oxidase in Nostoc sp. PCC 7119. The apparent electron transfer rate constants are ca. 250 and 300 s(-1) for cytochrome c6 and plastocyanin, respectively. These constants are 10 times higher than those obtained for the oxidation of horse cytochrome c by the oxidase, in spite of being a reaction thermodynamically more favourable.  相似文献   

19.
20.
The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号