首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The effects of inorganic phosphate (Pi) deficiency and ABA/ethylene status on expression of UDP-glucose pyrophosphorylase (UGPase) genes (Ugp), involved in sucrose/polysaccharide metabolism, were investigated. Both wild-type (wt), aba and abi mutants (ABA-deficient and -in-sensitive), etr, ein and eto (ethylene resistant and overproducing) grown on Pi-deficient and complete nutrient solution, as well as phol (Pi-deficient) mutants of Arabidopsis thaliana were used for experiments. Generally, Pi-deficiency conditions (including mannose feeding to decrease cytosolic Pi pool) resulted in an increase of Ugp expression in the leaves, under all experimental conditions. Mutant backgrounds reflecting differences in ABA or ethylene status/ sensitivity had no effect on the level of Ugp up-regulation by Pi-stress. Furthermore, feeding ABA to the leaves of wt and pho1 plants had no effect on Ugp expression, regardless of the sucrose status in the leaves. The data suggest that Pi deficiency leading to up-regulation of Ugp acts independently of ABA and ethylene status.  相似文献   

3.
4.
5.
6.
7.
The influence of varied supply of phosphorus (10 and 250 mmolP m–3) potassium (50 and 2010 mmol K m–3) and magnesium(20 and 1000 mmol Mg m–3) on the partitioning of dry matterand carbohydrates (reducing sugars, sucrose and starch) betweenshoots and roots was studied in bean (Phaseolus vulgaris) plantsgrown in nutrient solution over a 12 d period. Shoot and rootgrowth were quite differently affected by low supply of P, K,and Mg. The shoot/root dry weight ratios were 4.9 in the control(sufficient plants), 1.8 in P-deficient, 6.9 in K-deficientand 10.2 in Mg-deficient plants. In primary (source) leaves,but not in trifoliate leaves, concentrations of reducing sugars,sucrose and starch were also differently affected by low nutrientsupply. In primary leaves under K deficiency and, particularlyMg deficiency, the concentrations of sucrose and reducing sugarswere much higher than in control and P-deficient plants. Magnesiumdeficiency also distinctly increased the starch concentrationin the primary leaves. In contrast, in roots, the lowest concenfrationsof sucrose, reducing sugars and starch were found in Mg-deficientplants, whereas the concentrations of sucrose and starch wereparticularly high in P-deficient plants. There was a close relationshipbetween shoot/root dry weight ratios and relative distributionof total carbohydrates (sugars and starch) in shoot and roots.Of the total amounts of carbohyd rates per plant, the followingproportions were parti tioned to the roots: 22.7% in P-deficient,15.7% in control, 3.4% in K-deficient and 0.8% in Mg-deficientplants. The results indicate a distinct role of Mg and K in the exportof photosynthates from leaves to roots and suggest that alterationin photosynthate partitioning plays a major role in the differencesin dry matter distribution between shoots and roots of plantssuffering from mineral nutrient deficiency. Key words: Bean, carbohydrates, magnesium nutrition, phosphorus nutrition, potassium nutrition, shoot/root growth  相似文献   

8.
In regions of their leaves, tdy1-R mutants hyperaccumulate starch. We propose 2 alternative hypotheses to account for the data, that Tdy1 functions in starch catabolism or that Tdy1 promotes sucrose export from leaves. To determine whether Tdy1 might function in starch breakdown, we exposed plants to extended darkness. We found that the tdy1-R mutant leaves retain large amounts of starch on prolonged dark treatment, consistent with a defect in starch catabolism. To further test this hypothesis, we identified a mutant allele of the leaf expressed small subunit of ADP-glucose pyrophosphorylase (agps-m1), an enzyme required for starch synthesis. We determined that the agps-m1 mutant allele is a molecular null and that plants homozygous for the mutation lack transitory leaf starch. Epistasis analysis of tdy1-R; agps-m1 double mutants demonstrates that Tdy1 function is independent of starch metabolism. These data suggest that Tdy1 may function in sucrose export from leaves.  相似文献   

9.
10.
Tomato plants (Lycopersicon esculentum) grown in a complete nutrient solution for 8 days were transferred to a P-free solution of pH 6.0. Within 2 days of transfer the rate of alkalinization of the nutrient solution declined and by 4 days the solution had become acid. Nitrate transferred from roots to leaves was depressed over this period, and the rate of nitrate reductase activity in the leaves (the main site of assimilation of nitrate in tomato) had declined by 60% within 5 days of transfer. The activity of PEP carboxylase in the leaves of the P-deficient plants increased after 3 days, eventually becoming 3 times greater than in the leaves of plants adequately supplied with P. The PEP carboxylase activity in the roots of the P-deficient plants increased within 2 days, becoming 4 times greater after 8 days' growth. These results are discussed in relation to mechanisms for enhancement of P acquisition and maintenance of cation and anion uptake during P-deficiency.  相似文献   

11.
Cereal opaque-kernel mutants are ideal genetic materials for studying the mechanism of starch biosynthesis and amyloplast development. Here we isolated and identified two allelic floury endosperm 8 (flo8) mutants of rice, named flo8-1 and flo8-2. In the flo8 mutant, the starch content was decreased and the normal physicochemical features of starch were altered. Map-based cloning and subsequent DNA sequencing analysis revealed a single nucleotide substitution and an 8-bp insertion occurred in UDP-glucose pyrophosphorylase 1 (Ugp1) gene in flo8-1 and flo8-2, respectively. Complementation of the flo8-1 mutant restored normal seed appearance by expressing full length coding sequence of Ugp1. RT-qPCR analysis revealed that Ugp1 was ubiquitously expressed. Mutation caused the decreased UGPase activity and affected the expression of most of genes associated with starch biosynthesis. Meanwhile, western blot and enzyme activity analyses showed the comparability of protein levels and enzyme activity of most tested starch biosynthesis related genes. Our results demonstrate that Ugp1 plays an important role for starch biosynthesis in rice endosperm.  相似文献   

12.
植物尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)是蔗糖合成与降解途径的关键酶。本研究采用水稻叶片离体培养方法,结合Northern杂交技术,研究了外源糖对水稻Ugp1基因表达的影响。研究结果表明,蔗糖、葡萄糖、果糖、光照均能上调水稻Ugp1基因的表达,同时这种上调表达依赖于己糖激酶;果糖能上调水稻成熟叶片中Ugp1基因的表达,但并不影响苗期叶片中Ugp1基因的表达,具组织特异性;葡萄糖和果糖协同作用对Ugp1基因的诱导表达强于蔗糖,这种诱导除依赖于己糖激酶外,还存在其它未知的调控途径。水稻中存在UGPase的多种异构体,蔗糖及光照可诱导水稻Ugp1基因的上调表达,但对水稻UGPase的多种异构体形式并无影响。研究结果将有助于深入了解水稻Ugp1基因与糖信号途径互作调控网络。  相似文献   

13.
14.
15.
Maltose is exported from the Arabidopsis chloroplast as the main product of starch degradation at night. To investigate its fate in the cytosol, we characterised plants with mutations in a gene encoding a putative glucanotransferase (disproportionating enzyme; DPE2), a protein similar to the maltase Q (MalQ) gene product involved in maltose metabolism in bacteria. Use of a DPE2 antiserum revealed that the DPE2 protein is cytosolic. Four independent mutant lines lacked this protein and displayed a decreased capacity for both starch synthesis and starch degradation in leaves. They contained exceptionally high levels of maltose, and elevated levels of glucose, fructose and other malto-oligosaccharides. Sucrose levels were lower than those in wild-type plants, especially at the start of the dark period. A glucosyltransferase activity, capable of transferring one of the glucosyl units of maltose to glycogen or amylopectin and releasing the other, was identified in leaves of wild-type plants. Its activity was sufficient to account for the rate of starch degradation. This activity was absent from dpe2 mutant plants. Based on these results, we suggest that DPE2 is an essential component of the pathway from starch to sucrose and cellular metabolism in leaves at night. Its role is probably to metabolise maltose exported from the chloroplast. We propose a pathway for the conversion of starch to sucrose in an Arabidopsis leaf.  相似文献   

16.
ADP-glucose pyrophosphorylase (AGP) is a heterotetrameric enzyme comprising two small and two large subunits that catalyze the production of ADP-glucose linked to starch biosynthesis. The current paradigm on leaf starch metabolism assumes that post-translational redox modification of AGP in response to light is a major determinant of fine regulation of transitory starch accumulation. According to this view, under oxidizing conditions occurring during the night the two AGP small subunits (APS1) are covalently linked via an intermolecular disulfide bridge that inactivates the protein, whereas under reducing conditions occurring during the day NADP-thioredoxin reductase C (NTRC)-dependent reductive monomerization of APS1 activates the enzyme. In this work we have analyzed changes in the redox status of APS1 during dark-light transition in leaves of plants cultured under different light intensities. Furthermore, we have carried out time-course analyses of starch content in ntrc mutants, and in aps1 mutants expressing the Escherichia coli redox-insensitive AGP (GlgC) in the chloroplast. We also characterized aps1 plants expressing a redox-insensitive, mutated APS1 (APS1mut) form in which the highly conserved Cys81 residue involved in the formation of the intermolecular disulfide bridge has been replaced by serine. We found that a very moderate, NTRC-dependent APS1 monomerization process in response to light occurred only when plants were cultured under photo-oxidative conditions. We also found that starch accumulation rates during the light in leaves of both ntrc mutants and GlgC-expressing aps1 mutants were similar to those of wild-type leaves. Furthermore, the pattern of starch accumulation during illumination in leaves of APS1mut-expressing aps1 mutants was similar to that of APS1-expressing aps1 mutants at any light intensity. The overall data demonstrate that post-translational redox modification of AGP in response to light is not a major determinant of fine regulation of transitory starch accumulation in Arabidopsis.  相似文献   

17.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

18.
Utilization of sucrose and mannitol, the major forms of translocatable assimilate in celery ( Apium graveolens L. cv. Giant Pascal), was investigated in intact plants, excised leaves and leaf discs by estimating the soluble carbohydrate pools, starch levels and oxidation of [14C]-sucrose or mannitol in the light and after extended dark treatments. In detached mature fully-expanded leaves, mannitol pools remained constant, while sucrose decreased during a 48 h dark treatment. In attached leaves on plants trimmed to a single compound leaf, however, mannitol levels decreased after a dark treatment. In leaf discs floated on bathing solutions containing [14C]-sucrose or [14C]-mannitol, oxidation of mannitol was restricted to young leaf tissues, whereas sucrose was metabolized to CO2 regardless of leaf age. Uptake of labelled mannitol, however, was greater than that of sucrose in the light in leaves of every age. Although both mannitol and sucrose are translocated out of leaf tissues, leaf age differences indicate that, unlike sucrose, mannitol utilization is restricted to active sink tissues. The results suggest different roles for mannitol and sucrose with mannitol representing a more rigorously sequestered transport carbohydrate.  相似文献   

19.
20.
The water-water cycle which may be helpful for dissipating the excitation pressure over electron transport chain and minimizing the risk of photoinhibition and photodamage was investigated in rice after 10-d P-deficient treatment. Net photosynthetic rate decreased under P-deficiency, thus the absorption of photon energy exceeded the energy required for CO2 assimilation. A more sensitive response of effective quantum yield of photosystem 2 (ΦPS2) to O2 concentration was observed in plants that suffered P starvation, indicating that more electrons were transported to O2 in the P-deficient leaves. The electron transport rate through photosystem 2 (PS 2) (Jf) was stable, and the fraction of electron transport rate required to sustain CO2 assimilation and photorespiration (Jg/Jf) was significantly decreased accompanied by an increase in the alternative electron transport (Ja/Jf), indicating that a considerable electron amount had been transported to O2 during the water-water cycle in the P-deficient leaves. However, the fraction of electron transport to photorespiration (Jo/Jf) was also increased in the P-deficient leaves and it was less sensitive than that of water-water cycle. Therefore, water-water cycle could serve as an efficient electron sink. The higher non-photochemical fluorescence quenching (qN) in the P-deficient leaves depended on O2 concentration, suggesting that the water-water cycle might also contribute to non-radiative energy dissipation. Hence, the enhanced activity of the water-water cycle is important for protecting photosynthetic apparatus under P-deficiency in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号