首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An alternative 13C NMR method which allows direct determination of substrate oxidation in tissue for up to three competing 13C-enriched substrates is presented. Oxidation of competing substrates can be measured by 13C NMR spectroscopy under non-steady-state conditions if the relative areas of the glutamate C3 and C4 resonances can be determined. The accuracy of this measurement is limited during brief exposure to 13C-enriched substrates because of the low enrichment in the C3 carbon. The glutamate C4 resonance from a tissue sample which has oxidized a combination of [1,2-13C]acetate (or a uniformly enriched fatty acid mixture) and [3-13C]lactate appears as a nine-line resonance consisting of four multiplet components: a singlet (C4S), two doublets with differing one-bond coupling constants (C4D34 and C4D45), and a quartet (C4Q). It is shown that the sum of the C4S + C4D34 resonance areas versus the C4D45 + C4Q resonance areas directly reports the relative utilization of [3-13C]lactate versus [1,2-13C]acetate, respectively, regardless of citric acid cycle intermediate pool sizes or carbon flux through anaplerotic reactions. We also show that homonuclear 13C decoupling of the glutamate C2 resonance collapses the C3 resonance multiplet into an apparent triplet (actually, a singlet plus a doublet); the relative area of the singlet component reflects the amount of unlabeled acetyl-CoA entering the cycle. The method has been used to determine the contribution of lactate/acetate/glucose to acetyl-CoA in normoxic and reperfused rat hearts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A previous 13C NMR technique (Malloy, C. R., Sherry, A.D., and Jeffrey, F.M.H. (1987) FEBS Lett. 212, 58-62) for measuring the relative flux of molecules through the oxidative versus anaplerotic pathways involving the citric acid cycle of the rat heart has been extended to include a complete analysis of the entire glutamate 13C spectrum. Although still simple in practice, this more sophisticated model allows an evaluation of 13C fractional enrichment of molecules entering both the oxidative and anaplerotic pathways under steady-state conditions. The method was used to analyze 13C NMR spectra of intact hearts or their acid extracts during utilization of 13C-enriched pyruvate, propionate, acetate, or various combinations thereof. [2-13C]Pyruvate was used to prove that steady-state flux of pyruvate through pyruvate carboxylase is significant during co-perfusion of pyruvate and acetate, and we demonstrate for the first time that a nine-line 13C multiplet may be detected in an intact, beating heart. Acetate or pyruvate alone provided about 86% of the acetyl-CoA; in combination, about 65% of the acetyl-CoA was derived from acetate, about 30% was derived from pyruvate, and the remainder from endogenous sources. Propionate reduced the contribution of exogenous acetate to acetyl-CoA to 77% and also reduced the oxidation of endogenous substrates. Equations are presented which allow this same analysis on multiply labeled substrates, making this technique extremely powerful for the evaluation of substrate selection and relative metabolic flux through anaplerotic and oxidative pathways in the intact heart.  相似文献   

3.
Guinea pig hearts perfused in vitro with 99% enriched [3-13C]pyruvate and [3-13C]lactate have been examined by 13C NMR spectroscopy at 75.45 MHz. Resonances from the intracellular metabolites, glutamate, aspartate, alanine, citrate, malate, lactate, and acetylcarnitine are detected in the [3-13C]pyruvate-perfused hearts while glutamate is the only metabolite observed in the [3-13C]lactate-perfused hearts. Extracts obtained from individual freeze-clamped hearts run under high resolution conditions show similar distributions of metabolites indicating that the intracellular concentrations of these metabolites are indeed quite dependent upon the substrate being utilized. The excellent signal to noise in the spectra of lactate-perfused hearts allows observation of spin-spin coupling between 13C-enriched nuclei in the various glutamate isotopomers within the intact heart. It is shown that the steady-state distribution of glutamate isotopomers is determined by the amount of 12C- versus 13C-enriched acetyl-CoA entering the citric acid cycle and this provides the basis for a direct determination of substrate utilization by the heart in the presence of competing substrates. Similar information may be derived from the 13C spectrum of an extract prepared from a single [3-13C]pyruvate-perfused heart. Our results indicate that lactate is preferred over glucose by the guinea pig heart even in the presence of insulin.  相似文献   

4.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was employed to investigate alterations in hepatic carbohydrate metabolism in Meriones unguiculatus infected with Echinococcus multilocularis. Following portal vein injections of an equimolar mixture of [1,2-13C2]acetate and [3-13C]lactate, perchloric acid extracts of the livers were prepared and NMR spectra obtained. Isotopomer analysis using glutamate resonances in these spectra showed that the relative contributions of endogenous and exogenous substrates to the acetyl-CoA entering the tricarboxylic acid cycle differed significantly between infected and control groups. The mole fraction of acetyl-CoA that was derived from endogenous, unlabelled sources (F(U)) was 0.50 +/- 0.10 in controls compared to 0.34 +/- 0.04 in infected animals. However, the fraction of acetyl-CoA derived from [3-13C]lactate (FLL) was larger in livers of infected animals than those from controls with values of 0.27 +/- 0.04 and 0.18 +/- 0.04, respectively. Similarly, the fraction of acetyl-CoA derived from [1,2-13C2]acetate (FLA) was larger in livers of infected animals compared to those in controls; the fractions were 0.38 +/- 0.01 and 0.32 +/- 0.07, respectively. The ratio of FLA:FLL was significantly smaller in the infected group with a value of 1.42 +/- 0.18 compared to 1.74 +/- 0.09 for the controls. These results indicate that alveolar hydatid disease has a pronounced effect on the partitioning of substrates within the pathways of carbohydrate metabolism in the host liver.  相似文献   

5.
This study was designed to test the hypothesis that indirect (1)H[(13)C] detection of tricarboxylic acid (TCA) cycle intermediates using heteronuclear multiple quantum correlation-total correlation spectroscopy (HMQC-TOCSY) nuclear magnetic resonance (NMR) spectroscopy provides additional (13)C isotopomer information that better describes the kinetic exchanges that occur between intracellular compartments than direct (13)C NMR detection. NMR data were collected on extracts of rat hearts perfused at various times with combinations of [2-(13)C]acetate, propionate, the transaminase inhibitor aminooxyacetate, and (13)C multiplet areas derived from spectra of tissue glutamate were fit to a standard kinetic model of the TCA cycle. Although the two NMR methods detect different populations of (13)C isotopomers, similar values were found for TCA cycle and exchange fluxes by analyzing the two data sets. Perfusion of hearts with unlabeled propionate in addition to [2-(13)C]acetate resulted in an increase in the pool size of all four-carbon TCA cycle intermediates. This allowed the addition of isotopomer data from aspartate and malate in addition to the more abundant glutamate. This study illustrates that metabolic inhibitors can provide new insights into metabolic transport processes in intact tissues.  相似文献   

6.
Ex vivo ?(13)C, (2)H? NMR spectroscopy allowed to estimate the relative sizes of neuronal and glial glutamate pools and the relative contributions of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate to the neuronal and glial tricarboxylic acid cycles of the adult rat brain. Rats were infused during 60 min in the right jugular vein with solutions containing (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose or (2-(13)C, 2-(2)H(3)) acetate only. At the end of the infusion the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by high resolution (13)C NMR spectroscopy (90.5 MHz). The relative sizes of the neuronal and glial glutamate pools and the contributions of acetyl-CoA molecules derived from (2-(13)C, (2)H(3)) acetate or (1-(13)C) glucose entering the tricarboxylic acid cycles of both compartments, could be determined by the analysis of (2)H-(13)C multiplets and (2)H induced isotopic shifts observed in the C4 carbon resonances of glutamate and glutamine. During the infusions with (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose, the glial glutamate pool contributed 9% of total cerebral glutamate being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (4%), (2-(13)C) acetyl-CoA (3%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (2%). The neuronal glutamate pool accounted for 91% of the total cerebral glutamate being mainly originated from (2-(13)C) acetyl-CoA (86%) and (2-(13)C, 2-(2)H) acetyl-CoA (5%). During the infusions of (2-(13)C, 2-(2)H(3)) acetate only, the glial glutamate pool contributed 73% of the cerebral glutamate, being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (36%), (2-(13)C, 2-(2)H) acetyl-CoA (27%) and (2-(13)C) acetyl-CoA (10%). The neuronal pool contributed 27% of cerebral glutamate being formed from (2-(13)C) acetyl-CoA (11%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (16%). These results illustrate the potential of ?(13)C, (2)H? NMR spectroscopy as a novel approach to investigate substrate selection and metabolic compartmentation in the adult mammalian brain.  相似文献   

7.
B Kalderon  A Gopher  A Lapidot 《FEBS letters》1987,213(1):209-214
A quantitative analysis of the major metabolic pathways of hepatic glucose synthesis in fasted rats was conducted. [2-13C]Acetate was administered intraintestinally into awake fasted rats. 13C NMR and GC-MS analysis were used to quantitate the isotopic enrichments of glutamate, glutamine, lactate, alanine and the newly synthesized liver glucose. By measuring the ratio of carbon atoms in glutamate molecules derived from acetyl-CoA to carbon atoms in the glucose molecule derived from oxaloacetate and gluconeogenic substrates, such as lactate and alanine, the relative activities of the Krebs cycle and gluconeogenesis were quantified. Our results indicate that the percentage of glucose carbons originating by 'metabolic exchange' with the oxaloacetate pool, via the Krebs cycle, is less than 7%.  相似文献   

8.
Mathematical models of the TCA cycle derived previously for 14C tracer studies have been extended to 13C NMR to measure the 13C fractional enrichment of [2-13C]acetyl-CoA entering the cycle and the relative activities of the oxidative versus anaplerotic pathways. The analysis is based upon the steady-state enrichment of 13C into the glutamate carbons. Hearts perfused with [2-13C]acetate show low but significant activity of the anaplerotic pathways. Activation of two different anaplerotic pathways is demonstrated by addition of unlabeled propionate or pyruvate to hearts perfused with [2-13C]acetate. In each case, the amount of [2-13C]acetate being oxidized and the relative carbon flux through anaplerotic versus oxidative pathways are evaluated.  相似文献   

9.
Acetate accumulation is a common problem observed in aerobic high cell density Escherichia coli cultures. A previous report has hypothesized that the glyoxylate shunt is active in a low acetate producer, E. coli BL21, and inactive in a high acetate producer, JM109. To further investigate this hypothesis, we now develop a model for the incorporation of (13)C from uniformly labeled glucose into key TCA cycle intermediates. The (13)C isotopomer distributions of oxaloacetate and acetyl-CoA are first determined using NMR and MS techniques. These distributions are next validated by predicting the NMR spectrum of glutamate. Under steady state isotopic conditions, and with knowledge of the full isotopomer distributions of oxaloacetate and acetyl-CoA, the flux ratios through the TCA cycle and the glycoxylate shunt are obtained with respect to the flux through the PPC anaplerotic shunt. We conclude that in BL21, the glyoxylate shunt is active at 22% of the flux through the TCA cycle, and is inactive in JM109. Further, in BL21, the flux through the TCA cycle equals the flux through the PPC shunt, while in JM109 the TCA cycle flux is only third of the flux through the PPC shunt.  相似文献   

10.
Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.  相似文献   

11.
We investigated the carbon metabolism of three strains of Fibrobacter succinogenes and one strain of Fibrobacter intestinalis. The four strains produced the same amounts of the metabolites succinate, acetate, and formate in approximately the same ratio (3.7/1/0.3). The four strains similarly stored glycogen during all growth phases, and the glycogen-to-protein ratio was close to 0.6 during the exponential growth phase. 13C nuclear magnetic resonance (NMR) analysis of [1-13C]glucose utilization by resting cells of the four strains revealed a reversal of glycolysis at the triose phosphate level and the same metabolic pathways. Glycogen futile cycling was demonstrated by 13C NMR by following the simultaneous metabolism of labeled [13C]glycogen and exogenous unlabeled glucose. The isotopic dilutions of the CH2 of succinate and the CH3 of acetate when the resting cells were metabolizing [1-13C]glucose and unlabeled glycogen were precisely quantified by using 13C-filtered spin-echo difference 1H NMR spectroscopy. The measured isotopic dilutions were not the same for succinate and acetate; in the case of succinate, the dilutions reflected only the contribution of glycogen futile cycling, while in the case of acetate, another mechanism was also involved. Results obtained in complementary experiments are consistent with reversal of the succinate synthesis pathway. Our results indicated that for all of the strains, from 12 to 16% of the glucose entering the metabolic pathway originated from prestored glycogen. Although genetically diverse, the four Fibrobacter strains studied had very similar carbon metabolism characteristics.  相似文献   

12.
We developed an isotopic technique to assess mitochondrial acetyl-CoA turnover (≈citric acid flux) in perfused rat hearts. Hearts are perfused with buffer containing tracer [13C2,2H3]acetate, which forms M5 + M4 + M3 acetyl-CoA. The buffer may also contain one or two labeled substrates, which generate M2 acetyl-CoA (e.g. [13C6]glucose or [1,2-13C2]palmitate) or/and M1 acetyl-CoA (e.g. [1-13C]octanoate). The total acetyl-CoA turnover and the contributions of fuels to acetyl-CoA are calculated from the uptake of the acetate tracer and the mass isotopomer distribution of acetyl-CoA. The method was applied to measurements of acetyl-CoA turnover under different conditions (glucose ± palmitate ± insulin ± dichloroacetate). The data revealed (i) substrate cycling between glycogen and glucose-6-P and between glucose-6-P and triose phosphates, (ii) the release of small excess acetyl groups as acetylcarnitine and ketone bodies, and (iii) the channeling of mitochondrial acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Because of this channeling, the labeling of acetylcarnitine and ketone bodies released by the heart are not proxies of the labeling of mitochondrial acetyl-CoA.  相似文献   

13.
NMR spectroscopy and gas chromatography-mass spectrometry (GCMS) have both been used to study cardiac metabolism using substrates labeled with the stable isotope carbon-13. 13C-NMR studies of substrate oxidation are based on the assumption that the 13C-enrichment of glutamate reflects that of 2-ketoglutarate (2-KG). This assumption appears reasonable; however, it has not been thoroughly validated. The higher sensitivity of GCMS enables the direct determination of 13C-enrichment of 2-KG and other tricarboxylic acid (TCA) cycle intermediates. Therefore, using extracts from normal and diabetic hearts perfused with physiological concentrations of unlabeled glucose and 13C-labeled substrates, [3-13C](lactate + pyruvate) and [U-13C]palmitate, we compared the mass isotopomer distribution (MID) of citrate, 2-KG, succinate and malate measured directly by GCMS with that extrapolated from 13C-NMR glutamate isotopomer analysis. A significant correlation between the absolute molar percent enrichments (MPE) of the various mass isotopomers of glutamate determined by 13C-NMR and 2-KG determined by GCMS was observed for all sixteen-heart samples. This correlation was improved if the contribution from unlabeled 2-KG was removed (i.e. relative MPE) indicating that 13C-NMR under estimated the unlabeled fraction. We attribute this discrepancy in the measurement of unlabeled 2-KG to the fact that GCMS measures M0 directly, while the NMR analysis calculates it by difference, since unlabeled glutamate is not detected by 13C-NMR spectroscopy. Despite the differences between the two methods, 13C-MID of glutamate determined by NMR provides a simple and reliable indicator of fluxes of 13C-enriched substrates through the TCA cycle. It is also clear that MID analysis of TCA cycle intermediates by GCMS is a sensitive and direct approach to assess substrate selection for citrate synthesis as well as a potential indicator of sites and extent of anaplerosis and/or compartmentation. This study demonstrates that the alliance of NMR and GCMS represents a powerful approach for investigating the control and regulation of cardiac carbon metabolism.  相似文献   

14.
Despite the fact that lactate and pyruvate are potential substrates for energy production in vivo, our understanding of the control and regulation of carbohydrate metabolism is based principally on studies where glucose is the only available carbohydrate. Therefore, the purpose of this study was to determine the contributions of lactate, pyruvate, and glucose to energy production in the isolated, perfused rat heart over a range of insulin concentrations and after activation of pyruvate dehydrogenase with dichloroacetate (DCA). Hearts were perfused with physiological concentrations of [1-13C]glucose, [U-13C]lactate, [2-13C]pyruvate, and unlabeled palmitate for 45 min. Hearts were freeze clamped, and 13C NMR glutamate isotopomer analysis was performed on tissue extracts. Glucose, lactate, and pyruvate all contributed significantly to myocardial energy production; however, in the absence of insulin, glucose contributed only 25-30% of total pyruvate oxidation. Even under conditions where carbohydrates represented >95% of substrate entering the tricarboxylic acid (TCA) cycle, we found that glucose contributed at most 50-60% of total carbohydrate oxidation. Despite being present at only 0.1 mM, pyruvate contributed between approximately 10% and 30% of total acetyl-CoA entry into the TCA cycle. We also found that insulin and DCA not only increased glucose oxidation but also exogenous pyruvate oxidation; however, lactate oxidation was not increased. The differential effects of insulin and DCA on pyruvate and lactate oxidation provide further evidence for compartmentation of cardiac carbohydrate metabolism. These results may have important implications for understanding the mechanisms underlying the beneficial effects of increasing cardiac carbohydrate metabolism.  相似文献   

15.
The objective of the present study was to compare energy substrate fluxes through metabolic pathways leading to mitochondrial citrate synthesis and release in normal and diseased rat hearts using 13C-substrates and mass isotopomer analysis by gas chromatography-mass spectrometry (GCMS). This study was prompted by our previous finding of a modulated citrate release by perfused rat hearts and by the possibility that a dysregulated myocardial citrate release represents a specific chronic alteration of energy metabolism in cardiac patients. The 15-week-old spontaneously hypertensive rat (SHR) was chosen as our animal model of disease and the Wistar-Kyoto (WKY) rat as its matched control. Ex vivo work-performing hearts were perfused with a semi-recirculating buffer containing physiological concentrations of unlabeled (glucose) and 13C-labeled ([U-13C3](lactate + pyruvate) and/or [1-13C]oleate) substrates. In parallel to the continuous monitoring of indices of the heart's functional and physiological status, the following metabolic parameters were documented: (i) citrate release rates and citric acid cycle intermediate tissue levels, (ii) the contribution of fatty acids as well as pyruvate decarboxylation and carboxylation to citrate synthesis, and (iii) lactate and pyruvate uptake and efflux rates. Working hearts from both rat species showed a similar percent contribution of carbohydrates for citrate synthesis through decarboxylation (70%) and carboxylation (10%). SHR hearts showed the following metabolic alterations: a higher citrate release rate, which was associated with a parallel increase in its tissue level, a lower contribution of oleate -oxidation to citrate synthesis, and an accelerated efflux rate of unlabeled lactate from glycolysis. These metabolic changes were not explained by differences in myocardial oxygen consumption, cardiac performance or efficiency, nor correlated with indices of tissue necrosis or ischemia. This study demonstrates how the alliance between ex vivo semi-recirculating working perfused rat hearts with 13C-substrates and mass isotopomer analysis by GCMS, can provide an unprecedented insight into the metabolic phenotype of normal and diseased rat hearts. The clinical relevance of metabolic alterations herein documented in the SHR heart is suggested by its resemblance to those reported in cardiac patients. Taken altogether, our results raise the possibility that the increased citrate release of diseased hearts results from an imbalance between citrate synthesis and utilization rates, which becomes more apparent under conditions of substrate abundance.  相似文献   

16.
Anaplerosis from propionate was investigated in rat hearts perfused with 0-2mM [(13)C(3)]propionate and physiological concentrations of glucose, lactate, and pyruvate. The data show that when the concentration of [(13)C(3)]propionate was raised from 0 to 2mM, total anaplerosis increased from 5% to 16% of the turnover of citric acid cycle intermediates. Then, [(13)C(3)]propionate abolished anaplerosis from endogenous substrates, glucose, lactate, and pyruvate. Also, while the contents of propionyl-CoA and methylmalonyl-CoA increased with [(13)C(3)]propionate concentration, the content of succinyl-CoA decreased, presumably via activation of succinyl-CoA hydrolysis by a decrease in free CoA. Under our conditions, [(13)C(3)]propionate was a purely anaplerotic substrate since there was no labeling of mitochondrial acetyl-CoA, reflected by the labeling of the acetyl moiety of citrate.  相似文献   

17.
Triiodothyronine (T(3)) exerts direct action on myocardial oxygen consumption (MVO(2)), although its immediate effects on substrate metabolism have not been elucidated. The hypothesis, that T(3) regulates substrate selection and flux, was tested in isovolumic rat hearts under four conditions: control, T(3) (10 nM), epinephrine (Epi), and T(3) and Epi (TE). Hearts were perfused with [1,3-(13)C]acetoacetic acid (AA, 0.17 mM), L-[3-(13)C]lactic acid (LAC, 1.2 mM), U-(13)C-labeled long-chain free fatty acids (FFA, 0.35 mM), and unlabeled D-glucose (5.5 mM) for 30 min. Fractional acetyl-CoA contribution to the tricarboxylic acid cycle (Fc) per substrate was determined using (13)C NMR and isotopomer analysis. Oxidative fluxes were calculated using Fc, the respiratory quotient, and MVO(2). T(3) increased (P < 0.05) Fc(FFA), decreased Fc(LAC), and increased absolute FFA oxidation from 0.58 +/- 0.03 to 0.68 +/- 0.03 micromol. min(-1). g dry wt(-1) (P < 0.05). Epi decreased Fc(FFA) and Fc(AA), although FFA flux increased from 0.58 +/- 0.03 to 0.75 +/- 0.09 micromol. min(-1). g dry wt(-1). T(3) moderated the change in Fc(FFA) induced by Epi. In summary, T(3) exerts direct action on substrate pathways and enhances FFA selection and oxidation, although the Epi effect dominates at a high work state.  相似文献   

18.
13C NMR studies of butyric fermentation in Clostridium kluyveri   总被引:1,自引:0,他引:1  
The fermentation of 13C-labeled ethanol and acetate into butyrate and caproate by Clostridium kluyveri has been studied by using 13C NMR. The pathway involves the conversion of both ethanol and acetate into acetyl coenzymes A, two of which condense to form CoA-linked precursors of butyrate. If butyryl-CoA is involved in the condensation, caproate is the ultimate product. ATP is produced from acetyl-CoA via the reactions catalyzed by phosphotransacetylase and acetate kinase with acetate, a required carbon source, as a co-product. In spectra of whole cells incubated with the labeled carbon sources, label from ethanol appears rapidly in acetate, which then reaches a lower, steady-state concentration due to its re-entry into the pathway. The rapid initial production of acetate indicates equally rapid production of ATP. Label from acetate appears in ethanol only if ethanol is already present, indicating that this process is one of isotopic equilibration rather than net synthesis of ethanol from acetate. The ratio of butyrate to caproate produced depends strongly on the initial ratio of ethanol to acetate in the medium. The relative rates of utilization of ethanol and acetate vary as the fermentation proceeds. 13C-13C coupling in the butyrate and caproate produced from [1-13C]ethanol and [2-13C]acetate can be used to determine if the acetyl-CoA molecules arising from ethanol and acetate enter the same pool or if they remain separated. The data are consistent with random mixing of the acetyl-CoA produced from the two carbon sources.  相似文献   

19.
The spontaneously hypertensive rat (SHR) is a model of cardiomyopathy characterized by a restricted use of exogenous long-chain fatty acid (LCFA) for energy production. The aims of the present study were to document the functional and metabolic response of the SHR heart under conditions of increased energy demand and the effects of a medium-chain fatty acid (MCFA; octanoate) supplementation in this situation. Hearts were perfused ex vivo in a working mode with physiological concentrations of substrates and hormones and subjected to an adrenergic stimulation (epinephrine, 10 microM). (13)C-labeled substrates were used to assess substrate selection for energy production. Compared with control Wistar rat hearts, SHR hearts showed an impaired response to the adrenergic stimulation as reflected by 1) a smaller increase in contractility and developed pressure, 2) a faster decline in the aortic flow, and 3) greater cardiac tissue damage (lactate dehydrogenase release: 1,577 +/- 118 vs. 825 +/- 44 mU/min, P < 0.01). At the metabolic level, SHR hearts presented 1) a reduced exogenous LCFA contribution to the citric acid cycle flux (16 +/- 1 vs. 44 +/- 4%, P < 0.001) and an enhanced contribution of endogenous substrates (20 +/- 4 vs. 1 +/- 4%, P < 0.01); and 2) an increased lactate production from glycolysis, with a greater lactate-to-pyruvate production ratio. Addition of 0.2 mM octanoate reduced lactate dehydrogenase release (1,145 +/- 155 vs. 1,890 +/- 89 mU/min, P < 0.001) and increased exogenous fatty acid contribution to energy metabolism (23.7 +/- 1.3 vs. 15.8 +/- 0.8%, P < 0.01), which was accompanied by an equivalent decrease in unlabeled endogenous substrate contribution, possibly triglycerides (11.6 +/- 1.5 vs. 19.0 +/- 1.2%, P < 0.01). Taken altogether, these results demonstrate that the SHR heart shows an impaired capacity to withstand an acute adrenergic stress, which can be improved by increasing the contribution of exogenous fatty acid oxidation to energy production by MCFA supplementation.  相似文献   

20.
1?C labeling experiments performed with kernel cultures showed that developing maize endosperm is more efficient than other non-photosynthetic tissues such as sunflower and maize embryos at converting maternally supplied substrates into biomass. To characterize the metabolic fluxes in endosperm, maize kernels were labeled to isotopic steady state using 13C-labeled glucose. The resultant labeling in free metabolites and biomass was analyzed by NMR and GC-MS. After taking into account the labeling of substrates supplied by the metabolically active cob, the fluxes through central metabolism were quantified by computer-aided modeling. The flux map indicates that 51-69% of the ATP produced is used for biomass synthesis and up to 47% is expended in substrate cycling. These findings point to potential engineering targets for improving yield and increasing oil contents by, respectively, reducing substrate cycling and increasing the commitment of plastidic carbon into fatty acid synthesis at the level of pyruvate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号