首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualization of residue positions in protein alignments and mapping onto suitable structural models is an important first step in the interpretation of mutations or polymorphisms in terms of protein function, interaction, and thermodynamic stability. Selecting and highlighting large numbers of residue positions in a protein structure can be time-consuming and tedious with currently available software. Previously, a series of tasks and analyses had to be performed one-by-one to map mutations onto 3D protein structures; STRAP-NT is an extension of STRAP that automates these tasks so that users can quickly and conveniently map mutations onto 3D protein structures. When the structure of the protein of interest is not yet available, a related protein can frequently be found in the structure databases. In this case the alignment of both proteins becomes the crucial part of the analysis. Therefore we embedded these program modules into the Java-based multiple sequence alignment program STRAP-NT. STRAP-NT can simultaneously map an arbitrary number of mutations denoted using either the nucleotide or amino acid sequence. When the designations of the mutations refer to genomic sites, STRAP-NT translates them into the corresponding amino acid positions, taking intron-exon boundaries into account. STRAP-NT tightly integrates a number of current protein structure viewers (currently PYMOL, RASMOL, JMOL, and VMD) with which mutations and polymorphisms can be directly displayed on the 3D protein structure model. STRAP-NT is available at the PDB site and at http://www.charite.de/bioinf/strap/ or http://strapjava.de.  相似文献   

2.
The prediction of the protein tertiary structure from solely its residue sequence (the so called Protein Folding Problem) is one of the most challenging problems in Structural Bioinformatics. We focus on the protein residue contact map. When this map is assigned it is possible to reconstruct the 3D structure of the protein backbone. The general problem of recovering a set of 3D coordinates consistent with some given contact map is known as a unit-disk-graph realization problem and it has been recently proven to be NP-Hard. In this paper we describe a heuristic method (COMAR) that is able to reconstruct with an unprecedented rate (3-15 seconds) a 3D model that exactly matches the target contact map of a protein. Working with a non-redundant set of 1760 proteins, we find that the scoring efficiency of finding a 3D model very close to the protein native structure depends on the threshold value adopted to compute the protein residue contact map. Contact maps whose threshold values range from 10 to 18 Ångstroms allow reconstructing 3D models that are very similar to the proteins native structure.  相似文献   

3.
Annexins constitute a family of phospholipid- and Ca(2+)-binding proteins involved in a variety of membrane-related processes. The property of several annexins, including annexin A5, to self-organize at the surface of lipid membranes into 2D ordered arrays has been proposed to be functionally relevant in cellular contexts. To further address this question, we investigated the high-resolution structure of annexin A5 trimers in membrane-bound 2D crystals by cryo-electron microscopy (Cryo-EM). A new 2D crystal form was discovered, with p32(1) symmetry, which is significantly better ordered than the 2D crystals reported before. A 2D projection map was obtained at 6.5 A resolution, revealing protein densities within each of the four domains characteristic of annexins. A quantitative comparison was performed between this structure and models generated from the structure of the soluble form of annexin A5 in pseudo-R3 3D crystals. This analysis indicated that both structures are essentially identical, except for small local changes attributed to membrane binding. As a consequence, and contrary to the common view, annexin A5 molecules maintain their bent shape and do not flatten upon membrane binding, which implies either that the four putative Ca(2+) and membrane-binding loops present different types of interaction with the membrane surface, or that the membrane surface is locally perturbed. We propose that the trimerization of annexin A5 molecules is the relevant structural change occurring upon membrane binding. The evidence that 2D arrays of annexin A5 trimers are responsible for its in vitro property of blood coagulation inhibition supports this conclusion.  相似文献   

4.
MOTIVATION: As the sizes of three-dimensional (3D) protein structure databases are growing rapidly nowadays, exhaustive database searching, in which a 3D query structure is compared to each and every structure in the database, becomes inefficient. We propose a rapid 3D protein structure retrieval system named 'ProtDex2', in which we adopt the techniques used in information retrieval systems in order to perform rapid database searching without having access to every 3D structure in the database. The retrieval process is based on the inverted-file index constructed on the feature vectors of the relationships between the secondary structure elements (SSEs) of all the 3D protein structures in the database. ProtDex2 is a significant improvement, both in terms of speed and accuracy, upon its predecessor system, ProtDex. RESULTS: The experimental results show that ProtDex2 is very much faster than two well-known protein structure comparison methods, DALI and CE, yet not sacrificing on the accuracy of the comparison. When comparing with a similar SSE-based method, namely TopScan, ProtDex2 is much faster with comparable degree of accuracy. AVAILABILITY: The software is available at: http://xena1.ddns.comp.nus.edu.sg/~genesis/PD2.htm  相似文献   

5.
The centromeric region of rat chromosome 2 (2q1) harbors unidentified quantitative trait loci of genes that control tumor growth or development. To improve the mapping of this chromosome region, we microdissected it and generated 10 new microsatellite markers, which we included in the linkage map and/or radiation hybrid map of 2q1, together with other known markers, including four genes: Pcsk1 (protein convertase 1), Dhfr (dihydrofolate reductase), Ndub13 (NADH ubiquinone oxidoreductase subunit b13), and Ccnb1 (cyclin B1). To generate anchor points between the different maps, the gene Ndub13 and the microsatellite markers D2Ulb25 and D2Mit1 were also localized cytogenetically. The radiation map generated in region 2q1 extends its centromeric end of about 150 cR.  相似文献   

6.
Current analyses of protein sequence/structure relationships have focused on expected similarity relationships for structurally similar proteins. To survey and explore the basis of these relationships, we present a general sequence/structure map that covers all combinations of similarity/dissimilarity relationships and provide novel energetic analyses of these relationships. To aid our analysis, we divide protein relationships into four categories: expected/unexpected similarity (S and S(?)) and expected/unexpected dissimilarity (D and D(?)) relationships. In the expected similarity region S, we show that trends in the sequence/structure relation can be derived based on the requirement of protein stability and the energetics of sequence and structural changes. Specifically, we derive a formula relating sequence and structural deviations to a parameter characterizing protein stiffness; the formula fits the data reasonably well. We suggest that the absence of data in region S(?) (high structural but low sequence similarity) is due to unfavorable energetics. In contrast to region S, region D(?) (high sequence but low structural similarity) is well-represented by proteins that can accommodate large structural changes. Our analyses indicate that there are several categories of similarity relationships and that protein energetics provide a basis for understanding these relationships.  相似文献   

7.
In this paper, a 3D map of protein fold space was produced using Dali structure alignment and nonmetric multidimensional scaling. The fold space comprises four radial clusters, which correspond to the four classes of SCOP. The overall structure of the protein fold space is largely determined by three factors: secondary structure composition, topology of beta sheet, and domain size.  相似文献   

8.
SUMMARY: Voro3D is an original easy-to-use tool, which provides a brand new point of view on protein structures through the three-dimensional (3D) Voronoi tessellations. To construct the Voronoi cells associated with each amino acid by a number of different tessellation methods, Voro3D uses a protein structure file in the PDB format as an input. After calculation, different structural properties of interest like secondary structures assignment, environment accessibility and exact contact matrices can be derived without any geometrical cut-off. Voro3D provides also a visualization of these tessellations superimposed on the associated protein structure, from which it is possible to model a polygonal protein surface using a model solvent or to quantify, for instance, the contact areas between a protein and a ligand. AVAILABILITY: The software executable file for PC using Windows 98, 2000, NT, XP can be freely downloaded at http://www.lmcp.jussieu.fr/~mornon/voronoi.html CONTACT: franck.dupuis@sanofi-aventis.com; jean-paul-mornon@imcp.jussieu.fr.  相似文献   

9.
TRPC3 plays important roles in neuronal differentiation and immune cell maturation by mediating the cationic current in response to phospholipase C activation, Ca2+ depletion, and diacylglycerol stimulation. Here, we purified the TRPC3 channel using a glycosylated tetramer and observed the structure using electron microscopy. Negatively stained specimens demonstrate homogeneous protein particles containing an internal cavity-like structure. These particle images were picked up by automated pick-up programs, aligned, and classified by the growing neural gas network method. Similarly oriented projections were averaged to decrease the signal-to-noise ratio. The averaged images progress from the top view to the side views, which are representative of their raw images. The top view confirmed the hypothesis of a four-domain structure, and the side view demonstrates a large cytoplasmic domain with a capped structure at the bottom, which is near a predicted locus of ion release. The total image of the protein is a blunt-edged trapezoid of 200 x 200 x 235 A. This large dimension of TRPC3 is also supported by the Stokes radius (92 A) obtained from gel filtration chromatography.  相似文献   

10.
N G Irving  J A Hardy  S D Brown 《Genomics》1991,9(2):386-389
Utilizing a Mus spretus/Mus domesticus (C57BL/10) interspecific backcross, we have constructed a multipoint genetic map of mouse chromosome 16 that extends 43.2 cM from the proximal Prm-1 locus to the distal Ets-2 locus. The genetic map incorporates three new markers: D16Smh6, a random genomic clone; Pgk-1ps1, a phosphoglycerate kinase pseudogene; and the growth-associated protein Gap43. The map position of Gap43 indicates the presence, on mouse chromosome 16, of a significant-size conserved linkage group with human chromosome 3.  相似文献   

11.
A parameterized algorithm for protein structure alignment.   总被引:2,自引:0,他引:2  
This paper proposes a parameterized polynomial time approximation scheme (PTAS) for aligning two protein structures, in the case where one protein structure is represented by a contact map graph and the other by a contact map graph or a distance matrix. If the sequential order of alignment is not required, the time complexity is polynomial in the protein size and exponential with respect to two parameters D(u)/D(l) and D(c)/D(l), which usually can be treated as constants. In particular, D(u) is the distance threshold determining if two residues are in contact or not, D(c) is the maximally allowed distance between two matched residues after two proteins are superimposed, and D(l) is the minimum inter-residue distance in a typical protein. This result clearly demonstrates that the computational hardness of the contact map based protein structure alignment problem is related not to protein size but to several parameters modeling the problem. The result is achieved by decomposing the protein structure using tree decomposition and discretizing the rigid-body transformation space. Preliminary experimental results indicate that on a Linux PC, it takes from ten minutes to one hour to align two proteins with approximately 100 residues.  相似文献   

12.
As a member of the pentraxin family, C-reactive protein plays various roles in the nonspecific immunity of animals. Though soluble, C-reactive protein always functions on membranes. In order to study the structure of the membrane-bound protein and the reaction between protein and membranes, two-dimensional (2D) crystallization of rabbit C-reactive protein on lipid monolayers was performed. The 2D crystals composed of pentameric proteins were obtained on lipid monolayers by specific adsorption for the first time. The projection map at 26-A resolution is presented, which exhibits P2 symmetry with lattice parameters a = 158(+/-3) A, b = 92(+/-1) A, and gamma = 107(+/-1) degrees. The current work may give a basis for the further study on the structure of complexes made up of C-reactive protein with its functional binding molecules on membranes.  相似文献   

13.
We introduce the PSSH ('Protein Sequence-to-Structure Homologies') database derived from HSSP2, an improved version of the HSSP ('Homology-derived Secondary Structure of Proteins') database [Dodge et al. (1998) Nucleic Acids Res., 26, 313-315]. Whereas each HSSP entry lists all protein sequences related to a given 3D structure, PSSH is the 'inverse', with each entry listing all structures related to a given sequence. In addition, we introduce two other derived databases: HSSPchain, in which each entry lists all sequences related to a given PDB chain, and HSSPalign, in which each entry gives details of one sequence aligned onto one PDB chain. This re-organization makes it easier to navigate from sequence to structure, and to map sequence features onto 3D structures. Currently (September 2002), PSSH provides structural information for over 400 000 protein sequences, covering 48% of SWALL and 61% of SWISS-PROT sequences; HSSPchain provides sequence information for over 25 000 PDB chains, and HSSPalign gives over 14 million sequence-to-structure alignments. The databases can be accessed via SRS 3D, an extension to the SRS system, at http://srs3d.ebi.ac.uk/.  相似文献   

14.
SecA is a multifunctional protein involved in protein translocation in bacteria. The structure of SecA on membrane is dramatically altered compared with that in solution, accompanying with functional changes. We previously reported the formation of a novel ring-like structure of SecA on lipid layers, which may constitute part of the preprotein translocation channel. In the present work, two-dimensional crystallization of Escherichia coli SecA on lipid monolayers was performed to reveal the structural details of SecA on lipid layers and to investigate its function. The 2D crystals composed of ring-like structures were obtained by specific interaction between SecA and negatively charged lipid. The 2D projection map and 3D reconstruction from negative stained 2D crystals exhibited a distinct open channel-like structure of SecA, with an outer diameter of 7 nm and an inner diameter of 2 nm, providing the structural evidence for SecA importance in forming the part of the translocation channel. This pore structure is altered after transferring crystals to the SecB solution, indicating that the lipid-specific SecA structure has the SecB binding activity. The strategy developed here provides a promising technique for studying structure of SecA complex with its ligand on membrane.  相似文献   

15.
Kikuchi T 《Amino acids》2008,35(3):541-549
It is well-known that the IgG-binding domain from staphylococcal protein A folds into a 3α helix bundle structure, while the IgG-binding domain of streptococcal protein G forms an (α + β) structure. Recently, He et al. (Biochemistry 44:14055–14061, 2005) made mutants of these proteins from the wild types of protein A and protein G strains. These mutants are referred to as protein A219 and protein G311, and it was showed that these two mutants have different 3D structures, i.e., the 3α helix bundle structure and the (α + β) structure, respectively, despite the high sequence identity (59%). The purpose of our study was to clarify how such 3D structural differences are coded in the sequences with high homology. To address this problem, we introduce a predicted contact map constructed based on the interresidue average-distance statistics for prediction of folding properties of a protein. We refer to this map as an average distance map (ADM). Furthermore, the statistics of interresidue distances can be converted to an effective interresidue potential. We calculated the contact frequency of each residue of a protein in random conformations with this effective interresidue potential, and then we obtained values similar to ϕ values. We refer to this contact frequency of each residue as a p(μ) value. The comparison of the p(μ) values to the ϕ values for a protein suggests that p(μ) values reveal the information on the folding initiation site. Using these techniques, we try to extract the information on the difference in the 3D structures of protein A219 and protein G311 coded in their amino acid sequences in the present work. The results show that the ADM analyses and the p(μ) value analyses predict the information of folding initiation sites, which can be used to detect the 3D difference in both proteins.  相似文献   

16.
Folding of naturally occurring proteins has eluded a universal molecular level explanation till date. Rather, there is an abundance of diverse views on dominant factors governing protein folding. Through rigorous analyses of several thousand crystal structures, we observe that backbones of folded proteins display some remarkable invariant features. Folded proteins are characterized by spatially well-defined, distance dependent, and universal, neighborhoods of amino acids which defy any of the conventionally prevalent views. These findings present a compelling case for a newer view of protein folding which takes into account solvent mediated and amino acid shape and size assisted optimization of the tertiary structure of the polypeptide chain to make a functional protein.  相似文献   

17.
Seed proteome analysis by 2D IEF/SDS-PAGE techniques is challenging for the intrinsic difficulties related to quantitative disparity of the seed proteins, i.e. storage and non-storage proteins, their polymorphic nature, the extensive post-translational modifications and the paucity of deposited primary structures available. Conversely, 2D maps of seed proteomes can be extremely useful for a number of fundamental and applied investigations. In this work, we have used a combination of two experimental approaches to identify the main protein components of an emerging protein-rich legume seed, that is white lupin seed (Lupinus albus, L.). One is the canonical proteomic approach including 2D electrophoretic separation and mass spectrometry of selected trypsin-digested polypeptides; the other approach is a group comparative 2D electrophoretic analysis of cotyledonary protein families. To this second purpose, the three main families of lupin seed proteins, namely alpha-conglutins, the 11S globulin fraction, beta-conglutins, the 7S globulin fraction, and gamma-conglutin, a basic 7S protein, were isolated by conventional biochemical techniques and their 2D reference maps were compared with the total protein map. With the first approach 37 out of 40 spots, making up about 35% of total spot volumes in the 2D map, were found to belong to the main seed protein families. Thanks to cDNA-deduced lupin storage protein sequences, determined on purpose and deposited, most of the identification statistical parameters were very good. Moreover, it was possible to identify several endogenously proteolysed subunits in the map. The second comparative approach, beside confirming these attributions, allowed to allocate 124 polypeptides within the three main lupin protein families. These two approaches proved to be mutually validating and their combined use was effective for the establishment of a seed proteome map even in the case of sequence and protein post-translational processing lack of information. The results obtained also extend our knowledge of the seed storage protein polymorphism of white lupin.  相似文献   

18.
SHARP2: protein-protein interaction predictions using patch analysis   总被引:2,自引:0,他引:2  
SHARP2 is a flexible web-based bioinformatics tool for predicting potential protein-protein interaction sites on protein structures. It implements a predictive algorithm that calculates multiple parameters for overlapping patches of residues on the surface of a protein. Six parameters are calculated: solvation potential, hydrophobicity, accessible surface area, residue interface propensity, planarity and protrusion (SHARP2). Parameter scores for each patch are combined, and the patch with the highest combined score is predicted as a potential interaction site. SHARP2 enables users to upload 3D protein structure files in PDB format, to obtain information on potential interaction sites as downloadable HTML tables and to view the location of the sites on the 3D structure using Jmol. The server allows for the input of multiple structures and multiple combinations of parameters. Therefore predictions can be made for complete datasets, as well as individual structures. AVAILABILITY: http://www.bioinformatics.sussex.ac.uk/SHARP2.  相似文献   

19.
Shin YK  Lee HJ  Lee JS  Paik YK 《Proteomics》2006,6(4):1143-1150
To develop a standard method for separating highly basic proteins in mammalian cells, we established a 2-D LC separation system coupled with chromatofocusing/nonporous RP column chromatography (CF/NPRPC) in a ProteomeLab PF2D system. After standardizing conditions for 2-D LC, a 2-D liquid protein map of uninfected macrophage proteins with pH range 8.3-11.3 was constructed, and then compared with a macrophage protein map made after infection with Candida albicans. The results demonstrate that 2-D LC offers both high resolution and reproducibility for separation of highly basic, macrophage proteins. After protein identification using a nano 2-D LC-MS/MS Proteomics Solution System, quantitative determination of the changes in the differentially expressed proteins (e.g., galectin-3) in C. albicans-infected macrophages was also accomplished by measuring the peak area of the chromatogram in 2-D LC. The result from this measurement of galectin-3 expression shows a 3.41-fold decrease in the infected macrophage cells, which was further confirmed by that from the RT-PCR of mRNA of galectin-3. Thus, 2-D LC coupled with CF/NPRPC could be applicable to common analysis of highly basic proteins in a high-throughput manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号