首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central to issues surrounding the origin of euprimates, affinities of Paleocene Carpolestidae have been controversial. Carpolestids have been classified as plesiadapoid primates, tarsiiform euprimates, dermopterans, or the sister taxon of euprimates to the exclusion of other plesiadapiforms, based exclusively on dental or postcranial data. Newly discovered crania of Carpolestes simpsoni from the latest Paleocene of the Clarks Fork Basin, Wyoming, are the first described for the family Carpolestidae. The two best preserved skulls were studied using ultra high-resolution X-ray computed tomography. Comparison of these specimens to those of other stem primates (Plesiadapiformes) demonstrates that the diversity of cranial morphology in this group is greater than previously thought. Carpolestes differs from euprimates and is similar to other plesiadapiforms (Ignacius and Plesiadapis) in lacking a postorbital bar and having a relatively long rostrum. Carpolestes is similar to fossil euprimates and Plesiadapis in having a bullar morphology consistent with a petrosal origin, and differs from Ignacius, in which the bulla is composed of the entotympanic. Carpolestes differs from primitive euprimates and all other known plesiadapiforms in possessing a two-chambered auditory bulla, similar to that of modern Tarsius. However, Carpolestes had an internal carotid artery (ICA) that took a transpromontorial route from a posteromedially positioned posterior carotid foramen (pcf), unlike Tarsius, in which this artery takes a perbullar route from an anterolaterally positioned pcf. Carpolestes has clear grooves on the promontorium for both the promontorial and stapedial arteries, indicating that it had an unreduced internal carotid circulation, similar to that of early euprimates. Carpolestes differs from primitive euprimates and some specimens of Ignacius in not having bony tubes surrounding the branches of the ICA. Cladistic analysis of cranial data fails to support a close relationship of Carpolestidae to either tarsiiform euprimates or extant Dermoptera, but suggests a close relationship between Carpolestidae, Plesiadapidae, and Euprimates.  相似文献   

2.
Arboreal primates have distinctive intrinsic hand proportions compared with many other mammals. Within Euarchonta, platyrrhines and strepsirrhines have longer manual proximal phalanges relative to metacarpal length than colugos and terrestrial tree shrews. This trait is part of a complex of features allowing primates to grasp small-diameter arboreal substrates. In addition to many living and Eocene primates, relative elongation of proximal manual phalanges is also present in most plesiadapiforms. In order to evaluate the functional and evolutionary implications of manual similarities between crown primates and plesiadapiforms, we measured the lengths of the metacarpal, proximal phalanx, and intermediate phalanx of manual ray III for 132 extant mammal species (n=702 individuals). These data were compared with measurements of hands in six plesiadapiform species using ternary diagrams and phalangeal indices. Our analyses reveal that many arboreal mammals (including some tree shrews, rodents, marsupials, and carnivorans) have manual ray III proportions similar to those of various arboreal primates. By contrast, terrestrial tree shrews have hand proportions most similar to those of other terrestrial mammals, and colugos are highly derived in having relatively long intermediate phalanges. Phalangeal indices of arboreal species are significantly greater than those of the terrestrial species in our sample, reflecting the utility of having relatively long digits in an arboreal context. Although mammals known to be capable of prehensile grips demonstrate long digits relative to palm length, this feature is not uniquely associated with manual prehension and should be interpreted with caution in fossil taxa. Among plesiadapiforms, Carpolestes, Nannodectes, Ignacius, and Dryomomys have manual ray III proportions that are unlike those of most terrestrial species and most similar to those of various arboreal species of primates, tree shrews, and rodents. Within Euarchonta, Ignacius and Carpolestes have intrinsic hand proportions most comparable to those of living arboreal primates, while Nannodectes is very similar to the arboreal tree shrew Tupaia minor. These results provide additional evidence that plesiadapiforms were arboreal and support the hypothesis that Euarchonta originated in an arboreal milieu.  相似文献   

3.
Tarka and Tarkadectes are Middle Eocene mammals known only from the Rocky Mountains region of North America. Previous work has suggested that they are members of the Plagiomenidae, an extinct family often included in the order Dermoptera. Here we describe a new primate, Tarkops mckennai gen. et sp. nov., from the early Middle Eocene Irdinmanha Formation of Inner Mongolia, China. The new taxon is particularly similar to Tarka and Tarkadectes, but it also displays many features observed in omomyids. A phylogenetic analysis based on a data matrix including 59 taxa and 444 dental characters suggests that Tarkops, Tarka and Tarkadectes form a monophyletic group—the Tarkadectinae—that is nested within the omomyid clade. Within Omomyidae, tarkadectines appear to be closely related to Macrotarsius. Dermoptera, including extant and extinct flying lemurs and plagiomenids, is recognized as a clade nesting within the polyphyletic group of plesiadapiforms, therefore supporting the previous suggestion that the relationship between dermopterans and primates is as close as that between plesiadapiforms and primates. The distribution of tarkadectine primates on both sides of the Pacific Ocean basin suggests that palaeoenvironmental conditions appropriate to sustain primates occurred across a vast expanse of Asia and North America during the Middle Eocene.  相似文献   

4.
Body mass is undoubtedly central to the overall adaptive profile of any organism. Despite this, very little is known of what forces drive evolutionary changes in body mass and, consequently, shape patterns of body mass distribution exhibited by animal radiations. The search for factors that may influence evolutionary processes in general frequently focuses on environmental parameters such as climate change or interspecific competition. With respect to body mass, there is also the suggestion that evolutionary lineages may follow an inherent trend toward increased body mass, known as Cope's rule. The present paper investigates whether overall directional trends of body mass change, or correlations between patterns of body mass evolution and environmental factors have influenced the evolution of body mass in plesiadapiforms and primates. Analyses of the global fossil record of plesiadapiforms and primates suggest that the former did indeed follow an overall trend toward increased body mass compatible with the predictions of Cope's rule. In contrast, neither primates as a whole, nor a number of individual primate radiations (Adapiformes, Omomyiformes, and Anthropoidea), show any indication of overall directional patterns of body mass change. No correlations of primate body mass change with either the latitudinal distribution of fossil species, or with estimates of global temperature trends, were found. There is evidence, however, that direct competition between omomyiforms and adapiforms (the two main primate radiations known from the Paleogene) influenced processes of body mass evolution in omomyiforms.  相似文献   

5.
This study presents evidence that the first primates share with extant lemurs, tarsiers, and anthropoids hand proportions unlike those of their close relatives, the tree shrews (Scandentia), colugos (Dermoptera), and plesiadapiforms. Specifically, early primates as well as modern strepsirhines and haplorhines have relatively short metacarpals and long proximal phalanges giving them a grasping, prehensile hand. Limb development was studied in the primate Microcebus murinus and a comparative sample of rodents, artiodactyls, and marsupials to investigate the role of embryonic patterning in the morphogenesis and evolution of primate hand proportions. Comparative analysis shows that the derived finger proportions of primates are generated during the early phases of digital ray patterning and segmentation, when the interzone cells marking the presumptive metacarpo- and interphalangeal joints first appear. Interspecific variation in relative digit and metapodial proportions therefore has high developmental penetrance; that is, adult differences are observed at early ontogenetic stages. The paleontological, comparative, and developmental data are therefore consistent with the hypothesis that the early Cenozoic origin of primates involved an evolutionary change in digital ray pattern formation ultimately yielding a grasping, prehensile hand.  相似文献   

6.
In primates, the craniofacial skeleton and the dentition are marked by high levels of interspecific variation. Despite this, there are few comparative species studies conducted at the molecular level to investigate this functional diversity. We have determined nucleotide sequences of MSX1 and PAX9, two developmental genes, in a sample of 27 diverse primate species in order to identify coding or regulatory variation that may be associated with phenotypic diversity. Our analyses have identified four highly conserved noncoding sequences, including one that is conserved across primates and with dogs but not with mice. Although we find that substitution rates vary significantly across MSX1 exons, comparisons of nonsynonymous and synonymous substitution rates (dN/dS) suggest that, as a whole, MSX1 and PAX9 amino acid sequences have been under functional constraint throughout primate evolution. Compared to all other primates in our sample, our analysis of exon 1 in MSX1 finds an unusual pattern of amino acid substitution for Tarsius syrichta, a member of a lineage (tarsiers) that has many unique features among primates. For example, tarsiers are the only extant primates without deciduous incisors, and MSX1 is expressed exclusively in the incisor regions during the earliest stages of dental development. Our overall results provide insight into the utility of comparative species analyses of highly conserved developmental genes and their roles in the evolution of complex phenotypes.  相似文献   

7.
This study describes and tests a new method of calculating a shape metric known as the relief index (RFI) on lower second molars of extant euarchontan mammals, including scandentians (treeshrews), dermopterans (flying lemurs), and prosimian primates (strepsirhines and tarsiers). RFI is the ratio of the tooth crown three-dimensional area to two-dimensional planar area. It essentially expresses hypsodonty and complexity of tooth shape. Like other measurements of complexity, RFI ignores taxon-specific features, such as certain cusps and crests, which are usually considered in more traditional studies of tooth function. Traditional statistical analyses of the study sample show that RFI distinguishes taxa with differing amounts of structural carbohydrates in their diets, with frugivore/gramnivores being significantly lower in RFI than omnivores, and insectivores/folivores being significantly higher in RFI than the other two. Information on absolute size, or body mass, is needed to reliably parse out insectivores and folivores; however, if the study sample is limited to Primates, RFI alone distinguishes many folivores (lower) from insectivores (higher). Finally, phylogenetically independent contrasts of RFI and dietary preference are strongly correlated with one another, indicating that variance in RFI is better explained by dietary diversity than phylogenetic affinity in this sample. Because of the accuracy and phylogenetic insensitivity of the RFI among Euarchonta, this method can be applied to fossil primates and stem-primates (plesiadapiforms) and used to elucidate and compare their dietary preferences. Such comparisons are important for developing a more detailed view of primate evolution.  相似文献   

8.
A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non‐callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine‐like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine‐like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine‐like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Am J Phys Anthropol 151:420–447, 2013.© 2013 Wiley Periodicals, Inc.  相似文献   

9.
Two lines of evidence reviewed here argue against the recent proposal that strepsirhinism is an apomorphous feature in primates, shared only by adapiforms and lemuriforms. These are (1) the presence of strepsirhinism in several extant taxa of nonprimate mammals, including Tupaiidae, Tenrecidae, Erinaceus,and Didelphis,and (2) the inferred presence of strepsirhinism not only in adapiforms, but also in all plesiadapiforms and omomyids for which the relevant anatomical regions are known. Therefore, strepsirhinism cannot be invoked as an adaptive innovation underlying the initial strep-sirhine/haplorhine dichotomy. Likewise, the apparent retention of strepsirhinism in omomyids suggests either that the haplorhine oronasal configuration of extant tarsiids and anthropoids was acquired independently or that tarsiids and anthropoids form a clade to the exclusion of omomyids.  相似文献   

10.
The phylogenetic and geographic origins of bats (Chiroptera) remain unknown. The earliest confirmed records of bats date from the early Eocene (approximately 51 Ma) in North America with other early Eocene bat taxa also being represented from Europe, Africa, and Australia. Where known, skeletons of these early taxa indicate that many of the anatomical specializations characteristic of bats had already been achieved by the early Eocene, including forelimb and manus elongation in conjunction with structural changes in the pectoral skeleton, hind limb reorientation, and the presence of rudimentary echolocating abilities. By the middle Eocene, the diversification of bats was well underway with many modern families being represented among fossil forms. A new phylogenetic analysis indicates that several early fossil bats are consecutive sister taxa to the extant crown group (including megabats), and suggests a single origin for the order, at least by the late Paleocene. Although morphological studies have long placed bats in the Grandorder Archonta, (along with primates dermopterans, and tree shrews), recent molecular studies have refuted this hypothesis, instead strongly supporting placement of bats in Laurasiatheria. Primitively, proto-bats were likely insectivorous, under-branch hangers and elementary gliders that exploited terminal branch habitats. Recent work has indicated that a number of other mammalian groups began to exploit similar arboreal, terminal branch habitats in the Paleocene, including multituberculates, eulipotyphlans, dermopterans, and plesiadapiforms. This may offer an ecological explanation for morphological convergences that led to the erroneous inclusion of bats within Archonta: ancestral archontan groups as well as proto-bats apparently were exploiting similar arboreal habitats, which may have led to concurrent development of homoplasic morphological attributes.  相似文献   

11.
The morphological evidence for the phylogenetic relationships of euprimates, archaic primates, and related eutherian orders is reviewed following the methods of Hennigian phylogenetic systematics. Euprimates, the group including living primates and their closest common ancestor, is diagnosed by a suite of shared derived characters of the cranium and posteranium exhibiting relatively unique distributions among Eutheria. Plesiadapiformes, the group of archaic primates generally held to be the sister group to Euprimates, is not demonstrably monophyletic (with or without Microsyopidae). The Superorder Archonta (primates, tree shrews, bats, and colugos) is the only higher-level grouping including Euprimates that is based on uniquely derived morphological characters. Hypotheses of relationships within Archonta ally Euprimates with either tree shrews or some plesiadapiforms (paromomyids and plesiadapids), but the eurprimate-tree shrew clade receives more support from the distribution of derived characters among the taxa studied. Because the higher-level affinities of Euprimates are not well resolved, we advocate equating the Order Primates with the taxon Euprimates.  相似文献   

12.
The last decade has witnessed enormous gains in our knowledge of early anthro-poidean primates,
  • 1 “Anthropoidean” refers to members of the suborder Anthropoidea, whch contaings New and Old world monkeys, apes, and humans. These primates are also often called “simians,” “simiiforms” or “anthropoids;” the latter term is potentially confusing because it has often been used to refer only to the great apes.
  • the oldest known relatives of monkeys, apes and humans. Recent fossil finds in Egypt, Algeria, Tunisia, and Oman, along with the associated geological research at these sites, have radically changed our models of anthro-poidean origins and differentiation. Instead of first appearing as robust-jawed herbivorous primates in the earliest Oligocene, it is now apparent that there was radiation of small-bodied, fruit-and-insect-eating anthropoideans during the Eocene. These early forms included at least two oligopithecines (squirrel-monkey-sized primates with a catarrhine dental formula) and two early “parapithecid monkeys” (three-premolared primates with lumpy, bunodont dentitions). In addition, several smaller species from Algeria and Egypt, ranging in size from pygmy marmosets to tamarins, are not definitely assignable to previously known families. Alongside the early anthropoideans, there are also at least four recently identified prosimian families. The continental Eocene of Africa—for years, little more than a blank on the paieontologi-cal map—now comprises an increasingly productive field source of new data that is important in deciphering phyletic and adaptive aspects of the prosimian-anthropoid transition.  相似文献   

    13.
    Accelerated rate of gene gain and loss in primates   总被引:3,自引:0,他引:3       下载免费PDF全文
    Hahn MW  Demuth JP  Han SG 《Genetics》2007,177(3):1941-1949
    The molecular changes responsible for the evolution of modern humans have primarily been discussed in terms of individual nucleotide substitutions in regulatory or protein coding sequences. However, rates of nucleotide substitution are slowed in primates, and thus humans and chimpanzees are highly similar at the nucleotide level. We find that a third source of molecular evolution, gene gain and loss, is accelerated in primates relative to other mammals. Using a novel method that allows estimation of rate heterogeneity among lineages, we find that the rate of gene turnover in humans is more than 2.5 times faster than in other mammals and may be due to both mutational and selective forces. By reconciling the gene trees for all of the gene families included in the analysis, we are able to independently verify the numbers of inferred duplications. We also use two methods based on the genome assembly of rhesus macaque to further verify our results. Our analyses identify several gene families that have expanded or contracted more rapidly than is expected even after accounting for an overall rate acceleration in primates, including brain-related families that have more than doubled in size in humans. Many of the families showing large expansions also show evidence for positive selection on their nucleotide sequences, suggesting that selection has been important in shaping copy-number differences among mammals. These findings may help explain why humans and chimpanzees show high similarity between orthologous nucleotides yet great morphological and behavioral differences.  相似文献   

    14.
    A postorbital bar is one of a suite of derived features which distinguishes basal primates from their putative sister taxon, plesiadapiforms. Two hypotheses have been put forward to explain postorbital bar development and variation in circumorbital form: the facial torsion model and visual predation hypothesis. To test the facial torsion model, we employ strain data on circumorbital and mandibular loading patterns in representative primates with a postorbital bar and masticatory apparatus similar to basal primates. To examine the visual predation hypothesis, we employ metric data on orbit orientation in Paleocene and Eocene primates, as well as several clades of visual predators and foragers that vary interspecifically in postorbital bar formation.A comparison of galago circumorbital and mandibular peak strains during powerful mastication demonstrates that circumorbital strains are quite low. This indicates that, as in anthropoids, the strepsirhine circumorbital region is excessively overbuilt for countering routine masticatory loads. The fact that circumorbital peak-strain levels are uniformly low in both primate suborders undermines any model which posits that masticatory stresses are determinants of circumorbital form, function and evolution. This is interpreted to mean that sufficient cortical bone must exist to prevent structural failure due to non-masticatory traumatic forces. Preliminary data also indicate that the difference between circumorbital and mandibular strains is greater in larger taxa.Comparative analyses of several extant analogs suggest that the postorbital bar apparently provides rigidity to the lateral orbital margins to ensure a high level of visual acuity during chewing and biting. The origin of the primate postorbital bar is linked to changes in orbital convergence and frontation at smaller sizes due to nocturnal visual predation and increased encephalization. By incorporating in vivo and fossil data, we reformulate the visual predation hypothesis of primate origins and thus offer new insights into major adaptive transformations in the primate skull.  相似文献   

    15.
    Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles   总被引:5,自引:0,他引:5  
    The genetic diversity of the bovine class IIDRB3 locus was investigated by polymerase chain reaction (PCR) amplification and DNA sequencing of the first domain exon. Studying 34 animals of various cattle breeds, 14 previously unrecognized DRB3 alleles were identified. In three alleles, amino acid substitutions were observed that had not been previously found in bovine DRB3, but occurred at the same position in bovine DQB and in the DRB alleles of other mammals. For all newly identified alleles, the restriction fragment length polymorphism (RFLP) patterns of PCR products obtained with the enzymes Rsa I, Bst YI, and Hae III were compared with patterns of 38 previously described alleles. Altogether, eleven novel PCR-RFLP types were defined. Twelve out of the 42 PCR-RFLP types identified so far were not found to be fully informative because they corresponded to more than one allelic sequence. PCR-RFLP may therefore be a rapid and useful method for DRB3 typing in cattle families, but for studies on outbred populations, sequencing and hybridization techniques are required.  相似文献   

    16.
    A foot specialized for grasping small branches with a divergent opposable hallux (hallucal grasping) represents a key adaptive complex characterizing almost all arboreal non-human euprimates. Evolution of such grasping extremities probably allowed members of a lineage leading to the common ancestor of modern primates to access resources available in a small-branch niche, including angiosperm products and insects. A better understanding of the mechanisms by which euprimates use their feet to grasp will help clarify the functional significance of morphological differences between the euprimate grasp complex and features representing specialized grasping in other distantly related groups (e.g., marsupials and carnivorans) and in closely related fossil taxa (e.g., plesiadapiforms). In particular, among specialized graspers euprimates are uniquely characterized by a large peroneal process on the base of the first metatarsal, but the functional significance of this trait is poorly understood. We tested the hypothesis that the large size of the peroneal process corresponds to the pull of the attaching peroneus longus muscle recruited to adduct the hallux during grasping. Using telemetered electromyography on three individuals of Varecia variegata and two of Eulemur rubriventer, we found that peroneus longus does not generally exhibit activity consistent with an important function in hallucal grasping. Instead, extrinsic digital flexor muscles and, sometimes, the intrinsic adductor hallucis are active in ways that indicate a function in grasping with the hallux. Peroneus longus helps evert the foot and resists its inversion. We conclude that the large peroneal tuberosity that characterizes the hallucal metatarsal of prosimian euprimates does not correlate to "powerful" grasping with a divergent hallux in general, and cannot specifically be strongly linked to vertical clinging and climbing on small-diameter supports. Thus, the functional significance of this hallmark, euprimate feature remains to be determined.  相似文献   

    17.
    Although many primates exhibit striking coloration, including brightly colored pelage and bare areas of skin, our understanding of the function and evolution of these traits pales in the face of knowledge about color in other taxa. However, recent years have seen an increase in the number of studies of individual variation in primate color and evidence is accumulating that these traits can act as important signals to conspecifics. Mandrills are arguably the most colorful of all primates. Here, we review what we have discovered about the signal function of coloration in male and female mandrills from our long-term studies of a semi-free-ranging colony in Franceville, Gabon and test the predictions of the Hamilton-Zuk hypothesis—that bright coloration is condition dependent, and that only individuals of superior quality will be able to express color fully—in this species. We compare measures of facial coloration in both sexes with parasite load (using fecal analysis over 1 annual cycle), immune status (hematological parameters), neutral genetic diversity (microsatellite heterozygosity), and major histocompatability (MHC) genotype to examine whether red coloration acts as an honest signal of individual quality in mandrills. We found that red coloration was unrelated to parasitism and hematological parameters. Red was also unrelated to genome-wide heterozygosity and MHC diversity, although specific MHC genotypes were significantly related to red. The healthy, provisioned nature of the colony and problems associated with observational, correlational studies restrict interpretation of our data, and it would be premature to draw conclusions as to whether color signals individual quality in mandrills. We conclude with some suggestions for future studies on the signal content of color in mandrills and other primates.  相似文献   

    18.
    蜘蛛的物种多样性是极其丰富的,但目前只有一小部分的蜘蛛种类被描述。世界上已描述的蜘蛛种类已超过40000种,隶属于110个科。在我们居住的小范围内,可能至少有30个科的数百种蜘蛛。就中国而言,估计可能有40000种以上的蜘蛛种类,但目前也只有大约4000种被命名。本检索表首次列出了中国现有67个蜘蛛科的答定特征.以及不同科之间的相似处和不同处。  相似文献   

    19.
    Diversity of the killer cell Ig-like receptors of rhesus monkeys   总被引:10,自引:0,他引:10  
    Because the killer cell Ig-like receptors (KIRs) have only been characterized in humans and chimpanzees, we do not have a full understanding of their evolutionary history. Therefore, cDNAs encoding the KIR molecules of five rhesus monkeys were characterized, and were found to differ from the KIR molecules identified in humans and chimpanzees. Whereas only one KIR2DL4 molecule is detected in humans and chimpanzees, two distinct KIR2DL4 homologues were identified in the monkeys. Although the two human KIR3DL molecules are limited in their polymorphism, the KIR3DL homologues in the monkeys were highly polymorphic. Up to five KIR3DL homologues were identified in each monkey that was studied, and eleven distinct KIR3DL molecules were detected in the five rhesus monkeys. Two novel families of KIR molecules were identified in the rhesus monkeys, KIR3DH and KIR1D. The KIR3DH molecules have three Ig domains, transmembrane domains homologous to KIR2DL4 molecules that contain an arginine, and short cytoplasmic domains. With these features, the KIR3DH molecules resemble the activating forms of the human KIR molecules. The KIR1D molecule encodes only one complete Ig domain before a frame-shift in the second Ig domain occurs, leading to early termination of the molecule. Multiple splice variants of KIR1D exist that encode at least one Ig domain, as well as transmembrane and cytoplasmic domains. The extensive diversity of the rhesus monkey KIR3DL homologues and the novel KIR3DH and KIR1D molecules suggests that the KIR family of molecules has evolved rapidly during the evolution of primates.  相似文献   

    20.
    Malignant adipocytic neoplasia is rare among nonhuman primates. We report the gross and microscopic features of a retroperitoneal liposarcoma with myxofibrosarcoma‐like dedifferentiation in a free‐ranging juvenile golden‐headed lion tamarin (Leontopithecus chrysomelas). To our knowledge, this is the first report of such tumor subtype in New World primates.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号