首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In field experiments with varying K fertilization (1981 and 1982) changes in EUF-K contents were studied in deep loess soils of Southern Lower Saxony under sugar beet. A significant positive linear relationship was found between EUF-K contents at 20°C and 200 V (15 mA) of the topsoils and quantities of K absorbed by sugar beet in both years. The corresponding regression lines for 1981 and 1982 are almost parallel, the only difference being the yield level which was higher in 1982.The relationship between EUF-K contents at 20°C of topsoils and sugar yields showed the same parallelism for the two years. Not much increase in sugar yield was found at EUF-K contents over 12 mg/100 g soil at EUF-K 80°C/EUF-K 20°C ratios between 0.5 and 0.7. To attain a sugar yield of 10 t/ha an EUF-K 20°C value of at least 12 mg/100 g soil is required for these deep soils at the beginning of the K uptake period. This finding confirms experiences gained over an 8-year period at the Tulln Sugar Factory (Austria) with fertilizer recommendations based on EUF.  相似文献   

2.
Summary Mobilization of soil-borne N, N fertilization and N removal by crops influence EUF-NO3-N contents as well as EUF-Norg contents in the course of a vegetation period. N mobilization alone (no N fertilization) increases the EUF-Norg contents only temporarily (mainly in May and July), while in December they are almost the same as in March (Table 1). The EUF-NO3 contents, on the contrary, increase during the vegetation period, so that an increment in NO3 is registered in unplanted pots in December. This increment is larger the higher the EUF-Norg contents are in March (Table 2).N fertilization increases the contents of both EUF-Norg and EUF-NO3, so that there is an increment in EUF-Norg as well as EUF-NO3 in December (Table 2). This finding also applies to field experiments under fallow (Figs. 4 and 5). However, in contrast to the pot experiment, the EUF-N contents in the field experiment were only temporarily increased by N mobilization alone. This means that N immobilization had taken place which had not been observed in the pot experiment under stable moisture conditions (Fig. 4 and Table 1).A close correlation between hot-water-soluble N contents and EUF-Norg is found only under uniform management conditions (uniform N-fertilizer rates). Depending on the time of sampling different regression equations are, however, obtained because of changes in EUF-Norg due to N mobilization, whereas the hot-water-soluble N contents hardly show any variations during the vegetation period (Fig. 6 and Table 3).  相似文献   

3.
Summary The EUF-N and EUF-K contents of deep grey-brown luvisols under fallow were investigated over a period of 18 months.EUF-NO3-N increased continuously during the spring and summer of 1983, reaching their peak in September/October. They declined in the winter of 1984, and increased again during the spring and summer of the same year.During the spring and winter EUF-Norg was higher than EUF-NO3-N. A decline in EUF-Norg due to mineralization was associated with an increase of EUF-NO3-N. EUF-Norg increased due to mobilization of soil N in April/May. EUF-Norg also increased in autumn 1983 as a consequence the incorporation of mineral nitrogen into this fraction. When mineral N was incorporated EUF-NO3-N declined.EUF-Norg in the subsoil was lower than in the topsoil. EUF-NO3-N in the subsoil decreased as EUF-Norg increased. It may therefore be assumed that the higher the content of EUF-Norg in the subsoil the more mineral nitrogen will be immobilized.  相似文献   

4.
The effects of beet cryptic virus (BCV) infection on sugar beet crops were investigated in field trials in 1990. Two sugar beet breeding stock lines were screened for infection by BCV. Seed lots containing different proportions of seed infected with BCV1 & 2 were obtained by crossing the stock lines and used in field trials at five different sites. Five characteristics of the infected plants were assessed. BCV infection appeared to have no significant effects on the sugar beet crop at four locations which suffered from drought stress but significant effects were found at one site where the crop was grown on grade 1 land with good moisture retention properties. Root yield and sugar yield were reduced by up to 17% and 20%, respectively, by BCV infection.  相似文献   

5.
In ten experiments on commercial sugar-beet crops grown on organic soils in 1984–86, a Genstat programme was used to examine the relationship between the initial population of Heterodera schachtii and sugar-beet root yield using the equation
Y = Ymin + (Ymax - Ymin) Zpi-T
Fixing T = 200 eggs + juveniles 100 g-1 soil and ZT= 0.95, estimated values of Ymax varied from 49.2–67.1 t ha-1 (129– 155% of the national average root yield for the years in which the experiments were carried out) and estimates of Ymin varied from 14.5–53.9 t ha-1 (27–94% of Ymax). The estimated average root yield loss caused by the nematode was 6.95 t ha-1.  相似文献   

6.
L. Wiklicky 《Plant and Soil》1982,64(1):115-127
Summary The relationship between the EUF-nutrient fractions in the soil on the one hand and the nutrient uptake of sugar beet as well as root yield and quality (polarization, α-amino N etc.) on the other is described on the basis of results obtained over several years in surveys conducted in farmers' fields (5000–6000 fields under sugar beet per year) and in field experiments (25–35 sites per year). Statistically significant close correlations with the respective parameters were found for the following EUF nutrient fractions: EUF-NO3, EUF-P, EUF-K, EUF-Na, EUF-B and EUF-Mn. Within five years it was possible to determine the EUF-nutrient values which are required for the production of 9 t sugar/ha. These EUF values are the following: Ca: 65–70 mg/100 g at 20°C K: 11–15 mg/100 g at 20°C (depending on the clay content) Mg: 3–5 mg/100 g at 20°C Na: 2–3 mg/100 g at 20°C P: 1.4–1.6 mg/100 g at 20°C For calculation of the N fertilizer requirements of sugar beet it is suggested to use the sum of the EUF-extractable N amounts. It was found in Austria, Yugoslavia and Denmark over a period of 3 years that the EUF-N value of 1 mg/100 g soil determined between June and September was equivalent to 40 kg N/ha. If, for example, the analysed soil contains 3 mg EUF-N/100 g, 3×40=120 kg N/ha will be available to the sugar beet crop in the following year.  相似文献   

7.
The separate effects of beet yellows virus (BYV) and beet mild yellowing virus (BMYV) on yield of sugar-beet cultivars inoculated at different growth stages were assessed in field trials in 1985 and 1987. Early or mid-season inoculation decreased sugar yield by up to 47% for BYV, and up to 29% for BMYV. Infections after the end of July had no significant effect on yield. Both viruses caused significant increases in the juice impurities sodium, potassium and amino-nitrogen after infecting plants early in the season. Yield losses associated with infection were determined by the causative virus, the time of infection, and susceptibility of the sugar-beet cultivars.  相似文献   

8.
Effect of irrigation frequency on root water uptake in sugar beet   总被引:1,自引:0,他引:1  
A 2-year trial was performed on autumn-sown sugar beet grown in pots in order to study the influence of irrigation frequency on the water used by plants along the soil profile. The outdoor pots, containing one plant each, were 1.3 m high and had circular openings, through which Time Domain Reflectometry (TDR) apparatus wave guides could be inserted. Three irrigation intervals were compared and plants were watered whenever the soil layer explored by roots had lost 30% (SWD1), 50% (SWD2) and 70% (SWD3) of the total available water (TAW). During the irrigation season, the water extracted by the plants from each layer along the soil profile (RWU) was determined by monitoring volumetric soil moisture content (), by TDR. At harvest time, root length density (RLD) along the soil profile was assessed using the Tennant method. The applied irrigation frequencies significantly affected the RWU. With the SWD3 protocol, irrigation was at longer irrigation intervals (9 days) and watering volumes were as high as 84 mm. In this treatment, the plants lost almost 60% of total water from the lower soil layer (0.6–1.0 m). In treatment SWD1, the irrigation interval was very short (3 days), and water extraction from 0.0–0.6 m soil depth was 92.0%. In the intermediate treatment, the irrigation interval was 5.5 days and a more uniform water depletion was observed along the root zone, approximately equal between the 0–0.6 and 0.6–1.0 m soil layer. Water extraction of sugar beet plants at the deeper soil layers in response to long irrigation intervals was related to an increase in water uptake efficiency of the deeper younger roots and not to an increase in root length density, which, on the contrary, decreased. This morpho-physiological acclimatization to progressive soil water deficit was coupled with an increase of the root/shoot ratio.  相似文献   

9.
Structural alterations in mitochondrial DNAs (mtDNAs) from a plant of a sterile sugar beet line, callus derived from it, suspension-cultured cells and plants regenerated from the callus were studied. BamHI restriction analysis revealed that structural alterations between the mtDNAs of the callus and the control plant had occurred. Multiple rearrangements were also demonstrated in the mtDNA from the suspension culture, of which some were similar to those appearing in the callus, and others had arisen de novo. Rearrangements were also identified by means of blot hybridization of BamHI-digested mtDNA from suspension-cultured cells with the genes encoding subunit II of cytochrome oxidase (cox II) and subunit 1 of NADH-dehydrogenase (Nd1). No alterations were observed in the mitochondrial genome of the callus and regenerants. The location of the genes for the -subunit of F1-ATPase (atpA) and apocytochrome b (cob) in the mtDNA remained unchanged.Our salient finding was of a plant with an altered mitochondrial genome as judged by EcoRI and BamHI restriction analysis. This exceptional plant had retained the sterile phenotype like all of the other regenerants and the parent. The set of plasmid-like molecules of mtDNA remained the same as that in the control plant and in all of the regenerants, callus and suspension-cultured cells. The only type of plasmid-like molecule found in all of the DNAs was the 1.6-kbp minicircle, which is a feature of sterile cytoplasms. These structural changes in mtDNA were obviously a consequence of somaclonal variation during the in vitro cultivation of the sugar beet cells.  相似文献   

10.
Prakash C. Misra 《BBA》1982,680(2):228-230
Cells of the yeast Rhodotorula glutinis on treatment with N,N′-dicyclohexylcarbodiimide (DCCD) at a concentration of about 0.5 mM fail to accumulate d-xylose, cause efflux of accumulated sugar and do not exhibit H+/sugar symport. The results are interpreted as being due to depolarization of the membrane potential by DCCD.  相似文献   

11.
The consequences of nitrogen and water stress on sugar beet yield and quality are well documented in literature, whereas their interaction has been, surprisingly, little investigated. In the present research, the influence of early and late water stress on the dynamics of N uptake in leaves of different ages and on fertilizer efficiency was studied. Sugar beet plants, grown with a 15N-labelled fertilizer in 20 soil columns (300 L each) under a rain shelter, were subjected to three water regimes: well-watered control (WW); early (S1) and late (S2) stress, in a completely randomized design. Periodical samplings on succeeding leaves showed a decline in nitrogen concentration with ageing, compensated for by a recovery at each new leaf. Fertilizer N was mostly taken up early in the season, as its falling contribution to total leaf nutrient shows (from 35% to 17% in 63 days). The early stress constrained the availability of fertilizer N, whose uptake was later compensated for by younger leaves, after restoration of soil moisture. At harvest, WW yielded about 20% more biomass and sugar than S1 and S2. Nitrogen concentration in stressed plants compensated for biomass losses, and the total amount of nutrient did not vary among treatments, as well as the recovery of fertilizer N (41%) and the share of plant nutrient deriving from fertilizer (16%). It is perceived that sugar beet possesses an ability to buffer the effects of water stress on nitrogen nutrition, thanks to a flexibility concerning timing and the leaves acting as sinks for either a fertilizer-derived or soil-derived nutrient.  相似文献   

12.
The effects of organic acid extractants on the yield and characteristics of pectin from sugar beet pulp were investigated with citric acid, malic acid and lactic acid at different pH (1.5 and 2.0) and time (1 h and 2 h). The results demonstrated that the yields of pectins were directly correlated with the decrease of pH and reaction time, and the optimum yield of 17.2% was obtained at pH 1.5 and 2 h. Furthermore, the acid type also affected the physicochemical characteristics of pectin, especially on the esterification degree (42–71), galacturonic acid content (60.2–77.8%), emulsion activity (35.2–40.1%) and emulsion stability (62.1–79.4%), and a relatively single pectin mainly consisted of homogalacturonan could be obtained under a suitable reaction condition, which was an excellent crude material for the production of emulsion activity.  相似文献   

13.
14.
Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.  相似文献   

15.
通过对旱地甜菜叶片生长特性及摘除不同叶组对块根产量,含糖量,显微结构的影响研究,结果表明:甜菜第10-20片叶的叶龄最长,积温最高,是甜菜的主要功能叶;甜菜从第20片叶期起进入块根,糖份增长期,从第55叶期起进入糖份积累期;摘除不同叶组的叶片对甜菜块根产量,含糖量及显微结构均有不同程度降低作用,摘除前期叶组对甜菜块根产量,产糖量,根径减幅较大,摘除后期叶组对块根含糖量,维管束环数,维管束环密度减幅较大;摘除第1-30片叶对甜菜影响最大。  相似文献   

16.
Pea ( Pisum sativum L. cv. Fenomen) and sugar beet ( Beta vulgaris L. cv. Monohill) were cultivated in nutrient media without or with 10 μM CdCl2. Leaves of the same size and stage of development, detached or still attached to the intact plants, were submerged into redistilled water containing 1 to 250 μM CdCl2. The uptake experiments were run for 1 to 8 h at pH 3.6 and 5.1. Cuticular transpiration rate, density of leaf and density of stomata were also measured. Percentage of open stomata was studied at different pH.
Foliar uptake of Cd into the leaf is evident since Cd is transported from the exposed part of the pea leaves, through the petioles and into the stipules, and since the Cd concentration of the leaves increases with time and external Cd concentration. The foliar uptake depends on the permeability of the cuticular membrane, which is increased by a high intrinsic Cd level, which in turn enhances the foliar uptake of Cd in sugar beet. Higher cuticular permeability in pea than in sugar beet is shown by a 2.5 times higher cuticular transpiration rate and a 4 times lower density of leaf for pea, which causes a 7 times higher foliar uptake in pea than in sugar beet. Low pH decreases the net uptake of Cd, probably by an exchange reaction in the cutin and pectin of the cuticular membrane. Stomata are not directly involved in the Cd uptake, and the differences in the sum total of stomatal aperture area per unit leaf area is not related to differences in foliar uptake of Cd. Percentage of open stomata, calculated as average of both sides of the leaves, was not affected by changes in pH: but especially at high pH. proportionally more stomata were open on the adaxial than on the abaxial side.  相似文献   

17.
The results presented in this paper suggest that sugar beet became less suitable as a host for aphids after late June and early July, when the plants were at the 10–12 leaf stage. This was indicated by a faster rate of aphid mortality and greater incidence of dark stomach deposits after this time. Increased aphid mortality coincided with a change in physiology of sugar beet leaves from being net sinks to sources of assimilate. Aphids which fed on older leaves, irrespective of plant age, suffered greater mortality than those feeding on young heart leaves. The incidence of dark deposits in aphid stomachs associated with this mortality was greater on outer than on inner leaves of old, mature and young plants. It is suggested that the incidence of the dark deposit is an indicator of declining plant quality. The consequences of this for the spread of beet yellowing viruses are discussed.  相似文献   

18.
The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.  相似文献   

19.
硒肥对马铃薯硒素吸收、转化及产量、品质的影响   总被引:12,自引:0,他引:12  
通过设对照(CK)、保水缓释硒肥(W)、生物炭基硒肥(C)、硒酸钠硒肥(S)4个处理来研究不同硒肥对马铃薯(品种为早大白)硒素吸收、转化及产量、品质的影响。结果表明:各处理马铃薯各器官硒含量在生育期内总体上呈下降趋势,马铃薯各器官的硒含量呈现:苗期根茎叶片;成熟期叶片茎块茎的特点;随着硒肥用量的增加,W处理下的总硒、无机硒、有机硒含量呈增大趋势,产量、有机硒转化率、粗蛋白、还原糖和Vc呈先升高后降低的趋势;C处理和S处理下,马铃薯以上各指标均呈先升高后降低的趋势,在低施硒量(0.126 kg/hm2)时,3种硒肥显著降低了马铃薯块茎淀粉含量,之后随着施硒量的增加淀粉含量变化不显著;与对照相比,3种硒肥在适宜施硒量(0.379 kg/hm2)时,马铃薯产量提高了4.87%—5.44%,粗蛋白含量增加了12.18%—20.03%,还原糖提高了6.45%—12.90%,Vc含量提高-0.54%—3.11%,有机硒转化率增加13.00%—15.10%,淀粉含量增加了-0.73%—1.12%;综合考虑3种硒肥对马铃薯含硒量、产量、品质的影响,W处理最佳,C处理次之,S处理最差。  相似文献   

20.
以长达18年的微量元素肥料定位试验为背景,研究了长期施用微肥对小麦产量及氮磷养分吸收量的影响。结果表明,在施NP肥的基础上施Zn、B、Mn可显著提高小麦生物学产量,较NP KH2PO4分别提高6%以上;施Zn、B可显著提高小麦籽粒产量,较NP增产分别为5.5%和6.0%,较NP KH2PO4分别增产8.4%和8.9%;施Cu使小麦吸氮量提高3.1%,吸磷量提高7.7%,较NP KH2PO4吸氮量、吸磷量分别提高6.0%和5.5%;施Zn使小麦吸氮量提高4.1%,吸磷量提高2.5%,分别较NP KH2PO4处理吸氮量、吸磷量分别提高8.0%和6.9%;同时,施Zn、Mn、Cu肥较NP KH2P04更有利于籽粒对氮素的吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号