首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The embryonic stem cell line, S25, is a genetically modified line that allows lineage selection of neural cells (M. Li, L. Lovell-Badge, A. Smith (1998) Current Biology 8: 971–974). Here, the growth parameters of this cell line were analysed. Serial passaging in adherent conditions enabled these cells to grow rapidly (average specific growth rates of 0.035 h–1) and generate high viable cell densities (above 90%). The aggregation of the S25 cells into embryoid bodies (EBs) was also studied, indicating limited cell growth (maximum cell densities of 2.7×105 cells ml–1) and a high variability of aggregate size (70–400 m after 8 d). Enzymatic dissociation of EBs with 1% (v/v) trypsin gave highest cell viability (91%) and density (1.4×104 cells ml–1) and the cells thus obtained are able to differentiate into neurons.  相似文献   

2.
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment.  相似文献   

3.
Cells resident in an organism that possess the dual capacity for self-renewal and differentiation into a spectrum of subtypes are referred to as stem cells. In the past decade, basic research performed on stem cells has shed light on the molecular pathways operating in vivo which can be harnessed in vitro for the establishment of cell lines mirroring the stem cells in the organism. The attractiveness of stem cells as in vitro models of organotypic differentiation and their potential application in a clinical context holds great promise and is only beginning to be exploited. Stem cells can be broadly grouped into two categories based on their origin from either the embryonic or the adult. Only the early embryo possesses truly pluripotent cells that can give rise to all the cell types present in the embryo proper and adult. The adult, on the other hand, possesses specialized, tissue- or organ-specific stem cell types, which can give rise to the differentiated cell types of that specific organ and have in some instances been shown to transdifferentiate. However, no stem cell obtained from an adult organism has yet been shown to exhibit developmental potential matching the breadth of that of stem cells obtained from embryos. This review focuses on the different types of stem cells that are resident in early stage mammalian embryos, detailing their derivation and propagation in addition to highlighting their developmental potential and opportunities for future applications.  相似文献   

4.
The growth of a pluripotent embryonic stem (ES) cell population is dependent on cell survival, proliferation and self-renewal. The nucleotide ATP represents an important extracellular signalling molecule that regulates the survival of differentiated cells, however, its role is largely undefined in embryonic stem cells. Here we report a role for ATP-gated P2X7 receptors in ES cell survival. The functional expression of P2X7 receptors in undifferentiated mouse ES cells is demonstrated using a selective P2X7 antagonist and small interfering RNA knockdown of these receptors. Our data illustrate a key role for the P2X7 receptor as an essential pro-survival signal required for optimal ES cell colony growth in the presence of leukemia inhibitor factor (LIF). However, chronic exposure to exogenous ATP leads to rapid P2X7-dependent cell death via necrosis. Together, these data demonstrate a novel role for P2X7 receptors in regulation of ES cell behaviour where they can mediate either a pro-survival or pro-death signal depending on the mode of activation.  相似文献   

5.
Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly 2 orders of magnitude higher than that of 17-28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp, and Leu dominate PMI or 17-28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17-28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17-28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual-specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25-109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized intermolecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions.  相似文献   

6.
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.  相似文献   

7.
In the vertebrate embryo the heart is the first organ to form. Embryonic and extra-embryonic tissues are supposed to contribute to cardiac lineage commitment before and during gastrulation in a paracrine fashion. Evidence has accumulated that factors secreted by the anterior lateral endoderm and extra-embryonic endoderm contribute to cardiomyogenesis. Here we exploit in vitro differentiation of embryonic stem cells in embryoid bodies to study differentiation of the extraembryonic endodermal lineage, gastrulation-like processes, and the influence of endoderm on cardiomyogenesis. We demonstrate that in embryoid bodies primitive endoderm differentiates to visceral and parietal endoderm and that parietal endoderm influences onset of cardiomyogenesis in a concentration-dependent manner. Both increased concentrations of leukemia inhibitory factor and its absence in lif-/- embryoid bodies hampered parietal endoderm formation. Reduced differentiation of parietal endoderm correlated with an attenuation of cardiomyogenesis even in the presence of LIE These and previous results suggest that leukemia inhibitory factor is directly and indirectly, via endoderm formation, involved in the regulation of cardiomyogenesis. Increased proliferation of parietal endoderm in lifr -/- embryoid bodies and addition of conditioned lif -/- cell culture supernatant promoted cardiomyogenesis, demonstrating for the first time that parietal endoderm also contributes to cardiomyogenesis in embryoid bodies in a paracrine and leukemia inhibitory factor and its receptor independent pathway. New factors signaling independently of the leukemia inhibitory-factor receptor pathway may sustain cardiomyocyte cell proliferation and thus be a future target for gene therapy of cardiomyopathies and cell therapy of the myocardium.  相似文献   

8.
9.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunomodulatory properties in cells. All of them bind to the same receptor proteins, IFNAR1 and IFNAR2, with different affinities. While the 13 known IFNalphas are highly conserved, the C-terminal unstructured tail was found to have large variation in its net charge, from neutral to +4. This led us to speculate that the tail may have a role in modulation of the IFN biological activity, through fine-tuning the binding to IFNAR2. To evaluate this hypothesis, we replaced the tail of IFNalpha2 with that of IFNalpha8 and IFNbeta tails, or deleted the last five residues of this segment. Mutations to the more positively charged tail of IFNalpha8 resulted in a 20-fold higher affinity to IFNAR2, which results in a higher antiviral and antiproliferative activity. Double and multiple mutant cycle analysis placed the tail near a negatively charged loop on IFNAR2, comprising of residues Glu 132-134. Deleting the tail resulted in only twofold reduction in binding compared to the wild-type. Next, we modeled the location of the tail using a two-step procedure: first we generated 200 models of the tail docked on IFNAR2 using HADDOCK, second the models were scored according to the fit between experimentally determined rates of association of nine mutant complexes, and their calculated rates using the PARE software. From the results we suggest that the unstructured tail of IFNalpha is gaining a specific structure in the bound state, binding to a groove below the 132-134 loop in IFNAR2.  相似文献   

10.
DNMT3B is a de novo DNA methyltransferase that is highly expressed in mouse and human embryonic stem (ES) cells and has been shown to be essential for differentiation of mouse ES cells toward different lineages. In the present study, we found that DNMT3B is rapidly down-regulated in human ES cells during retinoic acid (RA)-induced differentiation compared with DNMT3A2, which is also highly expressed in ES cells. Silencing of DNMT3B in human ES cells by an inducible shRNAi system leads to a reduction of clonal ability of the stem cells, while expression of OCT4 and NANOG is unchanged. By contrast, the germline-specific genes VASA and SCP3 and the surface antigen BE12 are down regulated following DNMT3B knockdown. Upon retinoic acid-induced differentiation, we found that depletion of DNMT3B leads to a decrease in expression of the surface antigen A2B5 and of neural tube-associated genes PAX7 and BRN3A. Consistent with its importance in stem cell differentiation, we observed that silencing of DNMT3B facilitates the generation of cells that bear the hallmarks of pluripotency. Our findings suggest a role of DNMT3B in controlling the differentiation of human ES cells and in the generation of iPS cells.  相似文献   

11.
12.
Broadly neutralizing anti-hepatitis B virus (HBV) antibody HzKR127 undergoes a fairly large conformational change of CDR H3 loop upon binding to HBV preS1 epitope peptide. In this study, we identified low-affinity antibody-binding sites in the largely unstructured preS1 region by nuclear magnetic resonance and biochemical studies, indicating that the antibody binds to the preS1 region outside the major immune epitope with low affinity. Surface plasma resonance experiments showed that the full-length preS1 has approximately three fold higher affinity for HzKR127 Fab than the preS1 epitope peptide, suggesting that the presence of low-affinity sites in the preS1 region increases the antibody-binding affinity. Therefore, the low-affinity binding of the antibody to non-epitope regions of preS1 may contribute to effective neutralization.  相似文献   

13.
Induced pluripotent stem (iPS) cells have the pluripotency to differentiate into broad spectrum derivatives of all three embryonic germ layers. However, the in vitro organ differentiation potential of iPS cells to organize a complex and functional “organ” has not yet been demonstrated. Here, we demonstrate that mouse iPS cells have the ability to organize a gut-like organ with motor function in vitro by a hanging drop culture system. This “induced gut (iGut)” exhibited spontaneous contraction and highly coordinated peristalsis accompanied by a transportation of contents. Ultrastructural analysis identified that the iGut had large lumens surrounded by three distinct layers (epithelium, connective tissue and musculature). Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICCs, enteric pacemaker cells), was observed in the wall of the lumen and formed a distinct and dense network. The neurofilament immunoreactivity was identified to form large ganglion-like structures and dense neuronal networks. The iGut was composed of all the enteric components of three germ layers: epithelial cells (endoderm), smooth muscle cells (mesoderm), ICCs (mesoderm), and enteric neurons (ectoderm). This is the first report to demonstrate the in vitro differentiation potential of iPS cells into particular types of functional “organs.” This work not only contributes to understanding the mechanisms of incurable gut disease through disease-specific iPS cells, but also facilitates the clinical application of patient-specific iPS cells for novel therapeutic strategies such as patient-specific “organ” regenerative medicine in the future.  相似文献   

14.
Embryonic stem cells (ESCs) are pluripotent cells capable of differentiating into all somatic and germ cell types. The intrinsic ability of pluripotent cells to generate a vast array of different cells makes ESCs a robust resource for a variety of cell transplantation and tissue engineering applications, however, efficient and controlled means of directing ESC differentiation is essential for the development of regenerative therapies. ESCs are commonly differentiated in vitro by spontaneously self‐assembling in suspension culture into 3D cell aggregates called embryoid bodies (EBs), which mimic many of the hallmarks of early embryonic development, yet the 3D organization and structure of EBs also presents unique challenges to effectively direct the differentiation of the cells. ESC differentiation is strongly influenced by physical and chemical signals comprising the local extracellular microenvironment, thus current methods to engineer EB differentiation have focused primarily on spatially controlling EB size, adding soluble factors to the media, or culturing EBs on or within natural or synthetic extracellular matrices. Although most such strategies aim to influence differentiation from the exterior of EBs, engineering the microenvironment directly within EBs enables new opportunities to efficiently direct the fate of the cells by locally controlling the presentation of morphogenic cues. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
16.
We previously reported that PGRN directly bound to TNF receptors (TNFR) in vitro and in chondrocytes (Tang, et al., Science, 2011). Here we report that PGRN also associated with TNFR in splenocytes, and inhibited the binding of TNFα to immune cells. Proper folding of PGRN is essential for its binding to TNFR, as DTT treatment abolished its binding to TNFR. In contrast, the binding of PGRN to Sortilin was enhanced by DTT. Protein interaction assays with mutants of the TNFR extracellular domain demonstrated that CRD2 and CRD3 of TNFR are important for the interaction with PGRN, similar to the binding to TNFα. Taken together, these findings provide the molecular basis underlying PGRN/TNFR interaction and PGRN-mediated anti-inflammatory activity in various autoimmune diseases and conditions.  相似文献   

17.
The U1A-SL2 RNA complex is a model system for studying interactions between RNA and the RNA recognition motif (RRM), which is one of the most common RNA binding domains. We report here kinetic studies of dissociation of the U1A-SL2 RNA complex, using laser temperature jump and stopped-flow fluorescence methods with U1A proteins labeled with the intrinsic chromophore tryptophan. An analysis of the kinetic data suggests three phases of dissociation with time scales of ∼ 100 μs, ∼ 50 ms, and ∼ 2 s. We propose that the first step of dissociation is a fast rearrangement of the complex to form a loosely bound complex. The intermediate step is assigned to be the dissociation of the U1A-SL2 RNA complex, and the final step is assigned to a reorganization of the U1A protein structure into the conformation of the free protein. These assignments are consistent with previous proposals based on thermodynamic, NMR, and surface plasmon resonance experiments and molecular dynamics simulations. Together, these results begin to build a comprehensive model of the complex dynamic processes involved in the formation and dissociation of an RRM-RNA complex.  相似文献   

18.
The Tim8-Tim13 complex, located in the mitochondrial intermembrane space, functions in the TIM22 import pathway that mediates the import of the mitochondrial carriers Tim23, Tim22, and Tim17 into the mitochondrial inner membrane. The Tim8-Tim13 complex assembles as a hexamer and binds to the substrate Tim23 to chaperone the hydrophobic Tim23 across the aqueous intermembrane space. However, both structural features of the Tim8-Tim13 complex and the binding interaction to Tim23 remain poorly defined. The crystal structure of the yeast Tim8-Tim13 complex, reported here at 2.6 Å resolution, reveals that the architecture of the Tim8-Tim13 complex is similar to those of other chaperones such as Tim9-Tim10, prefoldin, and Skp, in which long helices extend from a central body like tentacles from a jellyfish. Surface plasmon resonance was applied to investigate interactions between the Tim8-Tim13 complex and Tim23. The Tim8-Tim13 complex contained approximately six binding sites and showed a complex binding interaction indicative of positive cooperativity rather than a simple bimolecular interaction. By combining results from the structural and binding studies, we provide a molecular model of the Tim8-Tim13 complex binding to Tim23. The regions where the tentacle helices attach to the body of the Tim8-Tim13 complex contain six hydrophobic pockets that likely interact with specific sequences of Tim23 and possibly other substrates. Smaller hydrophobic patches on the tentacles themselves likely interact nonspecifically with the substrate's transmembrane helices, shielding it from the aqueous intermembrane space. The central region of Tim23, which enters the intermembrane space first, may serve to nucleate the binding of the Tim8-Tim13 complex, thereby initiating the chaperoned translocation of Tim23 to the mitochondrial inner membrane.  相似文献   

19.
Conformational entropy is an important component of protein–protein interactions; however, there is no reliable method for computing this parameter. We have developed a statistical measure of residual backbone entropy in folded proteins by using the ?–ψ distributions of the 20 amino acids in common secondary structures. The backbone entropy patterns of amino acids within helix, sheet or coil form clusters that recapitulate the branching and hydrogen bonding properties of the side chains in the secondary structure type. The same types of residues in coil and sheet have identical backbone entropies, while helix residues have much smaller conformational entropies. We estimated the backbone entropy change for immunoglobulin complementarity-determining regions (CDRs) from the crystal structures of 34 low-affinity T-cell receptors and 40 high-affinity Fabs as a result of the formation of protein complexes. Surprisingly, we discovered that the computed backbone entropy loss of only the CDR3, but not all CDRs, correlated significantly with the kinetic and affinity constants of the 74 selected complexes. Consequently, we propose a simple algorithm to introduce proline mutations that restrict the conformational flexibility of CDRs and enhance the kinetics and affinity of immunoglobulin interactions. Combining the proline mutations with rationally designed mutants from a previous study led to 2400-fold increase in the affinity of the A6 T-cell receptor for Tax-HLAA2. However, this mutational scheme failed to induce significant binding changes in the already-high-affinity C225–Fab/huEGFR interface. Our results will serve as a roadmap to formulate more effective target functions to design immune complexes with improved biological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号