首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The embryonic stem cell line, S25, is a genetically modified line that allows lineage selection of neural cells (M. Li, L. Lovell-Badge, A. Smith (1998) Current Biology 8: 971–974). Here, the growth parameters of this cell line were analysed. Serial passaging in adherent conditions enabled these cells to grow rapidly (average specific growth rates of 0.035 h–1) and generate high viable cell densities (above 90%). The aggregation of the S25 cells into embryoid bodies (EBs) was also studied, indicating limited cell growth (maximum cell densities of 2.7×105 cells ml–1) and a high variability of aggregate size (70–400 m after 8 d). Enzymatic dissociation of EBs with 1% (v/v) trypsin gave highest cell viability (91%) and density (1.4×104 cells ml–1) and the cells thus obtained are able to differentiate into neurons.  相似文献   

2.
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment.  相似文献   

3.
Cells resident in an organism that possess the dual capacity for self-renewal and differentiation into a spectrum of subtypes are referred to as stem cells. In the past decade, basic research performed on stem cells has shed light on the molecular pathways operating in vivo which can be harnessed in vitro for the establishment of cell lines mirroring the stem cells in the organism. The attractiveness of stem cells as in vitro models of organotypic differentiation and their potential application in a clinical context holds great promise and is only beginning to be exploited. Stem cells can be broadly grouped into two categories based on their origin from either the embryonic or the adult. Only the early embryo possesses truly pluripotent cells that can give rise to all the cell types present in the embryo proper and adult. The adult, on the other hand, possesses specialized, tissue- or organ-specific stem cell types, which can give rise to the differentiated cell types of that specific organ and have in some instances been shown to transdifferentiate. However, no stem cell obtained from an adult organism has yet been shown to exhibit developmental potential matching the breadth of that of stem cells obtained from embryos. This review focuses on the different types of stem cells that are resident in early stage mammalian embryos, detailing their derivation and propagation in addition to highlighting their developmental potential and opportunities for future applications.  相似文献   

4.
5.
This study was carried out to isolate and characterize buffalo embryonic stem (ES) cell-like cells from in vitro-produced embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 120 blastocysts whereas 28 morulae were used for the isolation of blastomeres mechanically. The ICM cells/ blastomeres were cultured on mitomycin-C-treated feeder layer. Primary cell colony formation was higher (P < 0.05) for hatched blastocysts (73.1%, 30/41) than that for early/expanded blastocysts (25.3%, 20/79). However, no primary cell colonies were formed when blastomeres obtained from morulae were cultured. Primary colonies were formed in 14.1% (12/85) of intact blastocyst culture, which was significantly lower (P < 0.05) than that of 41.6% for ICM culture. These colonies were separated by enzymatic or mechanical disaggregation. Using mechanical disaggregation method, the cells remained undifferentiated and two buffalo ES cell-like cell lines (bES1, bES2) continued to grow in culture up to eight passages. However, disassociation through enzymatic method resulted in differentiation. Undifferentiated cells exhibited stem cell morphological features, normal chromosomal morphology, and expressed specific markers such as alkaline phosphatase (AP) and Oct-4. Cells formed embryoid bodies (EBs) in suspension culture; extended culture of EBs resulted in formation of cystic EBs. Following prolonged in vitro culture, these cells differentiated into several types of cells including neuron-like and epithelium-like cells. Furthermore, the vitrified-thawed ES cell-like cells also exhibited typical stem cell characteristics. In conclusion, buffalo ES cell-like cells could be isolated from in vitro-produced blastocysts and maintained in vitro for prolonged periods of time.  相似文献   

6.
The growth of a pluripotent embryonic stem (ES) cell population is dependent on cell survival, proliferation and self-renewal. The nucleotide ATP represents an important extracellular signalling molecule that regulates the survival of differentiated cells, however, its role is largely undefined in embryonic stem cells. Here we report a role for ATP-gated P2X7 receptors in ES cell survival. The functional expression of P2X7 receptors in undifferentiated mouse ES cells is demonstrated using a selective P2X7 antagonist and small interfering RNA knockdown of these receptors. Our data illustrate a key role for the P2X7 receptor as an essential pro-survival signal required for optimal ES cell colony growth in the presence of leukemia inhibitor factor (LIF). However, chronic exposure to exogenous ATP leads to rapid P2X7-dependent cell death via necrosis. Together, these data demonstrate a novel role for P2X7 receptors in regulation of ES cell behaviour where they can mediate either a pro-survival or pro-death signal depending on the mode of activation.  相似文献   

7.
The therapeutic potential of human pluripotent stem (hPS) cells is threatened, among various problems, by the difficulty to homogenously direct cell differentiation into specific lineages. The transition from hPSC into committed differentiated cells is accompanied by secretome activity, remodeling of extracellular matrix and self‐organization into germ layers. In this work, we aimed to investigate how different three‐dimensional microenvironments regulate the early differentiation of the three germ layers in human embryonic stem (hES) cells derived embryoid bodies. In particular, a permeable, biocompatible, hydrogel microwell array was specifically designed for recreating a confined niche in which EB secreted molecules accumulate in accordance with hydrogel diffusional cut‐off. Fluorescence recovery after photobleaching technique was performed to accurately evaluate hydrogel permeability, mesh size and diffusional cutoff for soluble molecules. Three different culture conditions of EB culture were analyzed: suspension, confinement in microwells of width/depth ratio 1:1 and 1:2. Results show that EBs cultured in microwells are viable and have comparable average size after 8 days culture. Whole genome microarrays show that significative differential gene expression was observed between suspension and confined EBs culture. In particular, EBs culture in microwells promotes the expression of genes involved in pattern specification processes, brain development, ectoderm and endoderm differentiation. On the contrary, suspension EBs express instead genes involved in mesoderm specification and heart development. These results suggest that local accumulation of EBs secreted molecules drives differentiation patterns, as confirmed by immunofluorescence of germ layer markers, in hydrogel confined EB culture from both hES cells and human induced pluripotent stem (hiPS) cells. Our findings highlight an additional potential role of biomaterial in controlling hPSC differentiation through secreted factor niche specification. Biotechnol. Bioeng. 2012; 109: 3119–3132. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
小鼠胚胎干细胞分化形成拟胚体过程中的细胞程序性死亡   总被引:1,自引:0,他引:1  
为了检测小鼠胚胎干细胞 (embryonicstemcell ,ES细胞 )体外分化的拟胚体 (embryoidbodies ,EBs)形成过程中细胞程序性死亡 (programmedcelldeath ,PCD)的发生 ,通过悬滴、悬浮培养技术定向诱导未分化的ES细胞分化为拟胚体 ,并用RT PCR检测原始内胚层、原始外胚层、中胚层、内脏内胚层 4种分子标记物在EBs中的表达 .通过TUNEL染色、电镜、激光共聚焦显微镜及Western印迹以确定凋亡发生 .结果表明 :ES细胞体外分化为拟胚体并且表达各胚层相应的分子标记物 ;在拟胚体的发育过程中出现明显的空腔化过程 ,TUNEL染色及电镜观察到凋亡生成 ,同时线粒体膜电位 (ΔΨm)在拟胚体发育过程中降低 ,通过Western印迹检测到caspase3、caspase8的激活 .表明小鼠ES细胞所分化的拟胚体可以作为研究早期胚胎发育的实验模型 ,线粒体在拟胚体的细胞程序性死亡过程中发挥重要的作用 .为进一步利用拟胚体研究细胞程序性死亡及相关信号分子在小鼠胚胎发育早期的作用奠定了基础  相似文献   

9.
The promise of human embryonic stem cells (hESCs) to provide an unlimited supply of cells for cell therapy and tissue engineering depends on the availability of a controllable bioprocess for their expansion and differentiation. We describe for the first time the formation of differentiating human embryoid bodies (hEBs) in rotating bioreactors to try and control their agglomeration. The efficacy of the dynamic process compared to static cultivation in Petri dishes was analyzed with respect to the yield of hEB formation and differentiation. Quantitative analyses of hEBs, DNA and protein contents, and viable cell concentration, as measures for culture cellularity and scale-up, revealed 3-fold enhancement in generation of hEBs compared to the static culture. Other metabolic indices such as glucose consumption, lactic acid production, and pH pointed to efficient cell expansion and differentiation in the dynamic cultures. The type of rotating vessel had a significant impact on the process of hEB formation and agglomeration. In the slow turning lateral vessel (STLV), hEBs were smaller in size and no large necrotic centers were seen, even after 1-month cultivation. In the high aspect rotating vessel (HARV), hEB agglomeration was massive. The appearance of representative tissues derived from the three germ layers as well as primitive neuronal tube organization, blood vessel formation, and specific-endocrine secretion indicated that the initial developmental events are not altered in the dynamically formed hEBs. Collectively, our study defines the culture conditions in which control over the aggregation of differentiating hESCs is obtained, thus enabling scaleable cell production for clinical and industrial applications.  相似文献   

10.
Inhibition of the interaction between the tumor suppressor protein p53 and its negative regulators MDM2 and MDMX is of great interest in cancer biology and drug design. We previously reported a potent duodecimal peptide inhibitor, termed PMI (TSFAEYWNLLSP), of the p53-MDM2 and -MDMX interactions. PMI competes with p53 for MDM2 and MDMX binding at an affinity roughly 2 orders of magnitude higher than that of 17-28p53 (ETFSDLWKLLPE) of the same length; both peptides adopt nearly identical α-helical conformations in the complexes, where the three highlighted hydrophobic residues Phe, Trp, and Leu dominate PMI or 17-28p53 binding to MDM2 and MDMX. To elucidate the molecular determinants for PMI activity and specificity, we performed a systematic Ala scanning mutational analysis of PMI and 17-28p53. The binding affinities for MDM2 and MDMX of a total of 35 peptides including 10 truncation analogs were quantified, affording a complete dissection of energetic contributions of individual residues of PMI and 17-28p53 to MDM2 and MDMX association. Importantly, the N8A mutation turned PMI into the most potent dual-specific antagonist of MDM2 and MDMX reported to date, registering respective Kd values of 490 pM and 2.4 nM. The co-crystal structure of N8A-PMI-25-109MDM2 was determined at 1.95 Å, affirming that high-affinity peptide binding to MDM2/MDMX necessitates, in addition to optimized intermolecular interactions, enhanced helix stability or propensity contributed by non-contact residues. The powerful empirical binding data and crystal structures present a unique opportunity for computational studies of peptide inhibition of the p53-MDM2/MDMX interactions.  相似文献   

11.
The sensor kinase KdpD and the response regulator KdpE control induction of the kdpFABC operon encoding the high-affinity K+-transport system KdpFABC in response to K+ limitation or salt stress. Under K+ limiting conditions the Kdp system restores the intracellular K+ concentration, while in response to salt stress K+ is accumulated far above the normal content. The kinase activity of KdpD is inhibited at high concentrations of K+, so it has been puzzling how the sensor can be activated in response to salt stress. Here, we demonstrate that the universal stress protein UspC acts as a scaffolding protein of the KdpD/KdpE signaling cascade by interacting with a Usp domain in KdpD of the UspA subfamily under salt stress. Escherichia coli encodes three single domain proteins of this subfamily, UspA, UspC, and UspD, whose expression is up-regulated under various stress conditions. Among these proteins only UspC stimulated the in vitro reconstructed signaling cascade (KdpD→KdpE→DNA) resulting in phosphorylation of KdpE at a K+ concentration that would otherwise almost prevent phosphorylation. In agreement, in a ΔuspC mutant KdpFABC production was down-regulated significantly when cells were exposed to salt stress, but unchanged under K+ limitation. Biochemical studies revealed that UspC interacts specifically with the Usp domain in the stimulus perceiving N-terminal domain of KdpD. Furthermore, UspC stabilized the KdpD/KdpE∼P/DNA complex and is therefore believed to act as a scaffolding protein. This study describes the stimulation of a bacterial two-component system under distinct stress conditions by a scaffolding protein, and highlights a new role of the universal stress proteins.  相似文献   

12.
In the vertebrate embryo the heart is the first organ to form. Embryonic and extra-embryonic tissues are supposed to contribute to cardiac lineage commitment before and during gastrulation in a paracrine fashion. Evidence has accumulated that factors secreted by the anterior lateral endoderm and extra-embryonic endoderm contribute to cardiomyogenesis. Here we exploit in vitro differentiation of embryonic stem cells in embryoid bodies to study differentiation of the extraembryonic endodermal lineage, gastrulation-like processes, and the influence of endoderm on cardiomyogenesis. We demonstrate that in embryoid bodies primitive endoderm differentiates to visceral and parietal endoderm and that parietal endoderm influences onset of cardiomyogenesis in a concentration-dependent manner. Both increased concentrations of leukemia inhibitory factor and its absence in lif-/- embryoid bodies hampered parietal endoderm formation. Reduced differentiation of parietal endoderm correlated with an attenuation of cardiomyogenesis even in the presence of LIE These and previous results suggest that leukemia inhibitory factor is directly and indirectly, via endoderm formation, involved in the regulation of cardiomyogenesis. Increased proliferation of parietal endoderm in lifr -/- embryoid bodies and addition of conditioned lif -/- cell culture supernatant promoted cardiomyogenesis, demonstrating for the first time that parietal endoderm also contributes to cardiomyogenesis in embryoid bodies in a paracrine and leukemia inhibitory factor and its receptor independent pathway. New factors signaling independently of the leukemia inhibitory-factor receptor pathway may sustain cardiomyocyte cell proliferation and thus be a future target for gene therapy of cardiomyopathies and cell therapy of the myocardium.  相似文献   

13.
The ability to generate human pluripotent stem cell-derived cell types at sufficiently high numbers and in a reproducible manner is fundamental for clinical and biopharmaceutical applications. Current experimental methods for the differentiation of pluripotent cells such as human embryonic stem cells (hESC) rely on the generation of heterogeneous aggregates of cells, also called "embryoid bodies" (EBs), in small scale static culture. These protocols are typically (1) not scalable, (2) result in a wide range of EB sizes and (3) expose cells to fluctuations in physicochemical parameters. With the goal of establishing a robust bioprocess we first screened different scalable suspension systems for their ability to support the growth and differentiation of hESCs. Next homogeneity of initial cell aggregates was improved by employing a micro-printing strategy to generate large numbers of size-specified hESC aggregates. Finally, these technologies were integrated into a fully controlled bioreactor system and the impact of oxygen concentration was investigated. Our results demonstrate the beneficial effects of stirred bioreactor culture, aggregate size-control and hypoxia (4% oxygen tension) on both cell growth and cell differentiation towards cardiomyocytes. QRT-PCR data for markers such as Brachyury, LIM domain homeobox gene Isl-1, Troponin T and Myosin Light Chain 2v, as well as immunohistochemistry and functional analysis by response to chronotropic agents, documented the impact of these parameters on cardiac differentiation. This study provides an important foundation towards the robust generation of clinically relevant numbers of hESC derived cells.  相似文献   

14.
With the increasing number and variations of genome sequences available, control of gene expression with synthetic, cell-permeable molecules is within reach. The variety of sequence-specific binding agents is, however, still quite limited. Many minor groove binding agents selectivity recognize AT over GC sequences but have less ability to distinguish among different AT sequences. The goal with this article is to develop compounds that can bind selectively to different AT sequences. A number of studies indicate that AATT and TTAA sequences have significantly different physical and interaction properties and different requirements for minor groove recognition. Although it has been difficult to get minor groove binding at TTAA, DB293, a phenyl-furan-benzimidazole diamidine, was found to bind as a strong, cooperative dimer at TTAA but with no selectivity over AATT. In order to improve selectivity, we made modifications to each unit of DB293. Binding affinities and stoichiometries obtained from biosensor-surface plasmon resonance experiments show that DB1003, a furan-furan-benzimidazole diamidine, binds strongly to TTAA as a dimer and has selectivity (KTTAA/KAATT = 6). CD and DNase I footprinting studies confirmed the preference of this compound for TTAA. In summary, (i) a favorable stacking surface provided by the pi system, (ii) H-bond donors to interact with TA base pairs at the floor of the groove provided by a benzimidazole (or indole) -NH and amidines, and (iii) appropriate curvature of the dimer complex to match the curvature of the minor groove play important roles in differentiating the TTAA and AATT minor grooves.  相似文献   

15.
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunomodulatory properties in cells. All of them bind to the same receptor proteins, IFNAR1 and IFNAR2, with different affinities. While the 13 known IFNalphas are highly conserved, the C-terminal unstructured tail was found to have large variation in its net charge, from neutral to +4. This led us to speculate that the tail may have a role in modulation of the IFN biological activity, through fine-tuning the binding to IFNAR2. To evaluate this hypothesis, we replaced the tail of IFNalpha2 with that of IFNalpha8 and IFNbeta tails, or deleted the last five residues of this segment. Mutations to the more positively charged tail of IFNalpha8 resulted in a 20-fold higher affinity to IFNAR2, which results in a higher antiviral and antiproliferative activity. Double and multiple mutant cycle analysis placed the tail near a negatively charged loop on IFNAR2, comprising of residues Glu 132-134. Deleting the tail resulted in only twofold reduction in binding compared to the wild-type. Next, we modeled the location of the tail using a two-step procedure: first we generated 200 models of the tail docked on IFNAR2 using HADDOCK, second the models were scored according to the fit between experimentally determined rates of association of nine mutant complexes, and their calculated rates using the PARE software. From the results we suggest that the unstructured tail of IFNalpha is gaining a specific structure in the bound state, binding to a groove below the 132-134 loop in IFNAR2.  相似文献   

16.
17.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

18.
Broadly neutralizing anti-hepatitis B virus (HBV) antibody HzKR127 undergoes a fairly large conformational change of CDR H3 loop upon binding to HBV preS1 epitope peptide. In this study, we identified low-affinity antibody-binding sites in the largely unstructured preS1 region by nuclear magnetic resonance and biochemical studies, indicating that the antibody binds to the preS1 region outside the major immune epitope with low affinity. Surface plasma resonance experiments showed that the full-length preS1 has approximately three fold higher affinity for HzKR127 Fab than the preS1 epitope peptide, suggesting that the presence of low-affinity sites in the preS1 region increases the antibody-binding affinity. Therefore, the low-affinity binding of the antibody to non-epitope regions of preS1 may contribute to effective neutralization.  相似文献   

19.
20.
DNMT3B is a de novo DNA methyltransferase that is highly expressed in mouse and human embryonic stem (ES) cells and has been shown to be essential for differentiation of mouse ES cells toward different lineages. In the present study, we found that DNMT3B is rapidly down-regulated in human ES cells during retinoic acid (RA)-induced differentiation compared with DNMT3A2, which is also highly expressed in ES cells. Silencing of DNMT3B in human ES cells by an inducible shRNAi system leads to a reduction of clonal ability of the stem cells, while expression of OCT4 and NANOG is unchanged. By contrast, the germline-specific genes VASA and SCP3 and the surface antigen BE12 are down regulated following DNMT3B knockdown. Upon retinoic acid-induced differentiation, we found that depletion of DNMT3B leads to a decrease in expression of the surface antigen A2B5 and of neural tube-associated genes PAX7 and BRN3A. Consistent with its importance in stem cell differentiation, we observed that silencing of DNMT3B facilitates the generation of cells that bear the hallmarks of pluripotency. Our findings suggest a role of DNMT3B in controlling the differentiation of human ES cells and in the generation of iPS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号