首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellite marker technology in combination with three doubled haploid mapping populations of Brassica juncea were used to map and tag two independent loci controlling seed coat colour in B. juncea. One of the populations, derived from a cross between a brown-seeded Indian cultivar, Varuna, and a Canadian yellow-seeded line, Heera, segregated for two genes coding for seed coat colour; the other two populations segregated for one gene each. Microsatellite markers were obtained from related Brassica species. Three microsatellite markers (Ra2-A11, Na10-A08 and Ni4-F11) showing strong association with seed coat colour were identified through bulk segregant analysis. Subsequent mapping placed Ra2-A11 and Na10-A08 on linkage group (LG) 1 at an interval of 0.6 cM from each other and marker Ni4-F11 on LG 2 of the linkage map of B. juncea published previously (Pradhan et al., Theor Appl Genet 106:607–614, 2003). The two seed coat colour genes were placed with markers Ra2-A11 and Na10-A08 on LG 1 and Ni4-F11 on LG 2 based on marker genotyping data derived from the two mapping populations segregating for one gene each. One of the genes (BjSC1) co-segregated with marker Na10-A08 in LG 1 and the other gene (BjSC2) with Ni4-F11 in LG 2, without any recombination in the respective mapping populations of 130 and 103 segregating plants. The identified microsatellite markers were studied for their length polymorphism in a number of yellow-seeded eastern European and brown-seeded Indian germplasm of B. juncea and were found to be useful for the diversification of yellow seed coat colour from a variety of sources into Indian germplasm.  相似文献   

2.
Endozoochory is a prominent form of seed dispersal in tropical dry forests. Most extant megafauna that perform such seed dispersal are ungulates, which can also be seed predators. White‐tailed deer (Odocoileus virginianus) is one of the last extant megafauna of Neotropical dry forests, but whether it serves as a legitimate seed disperser is poorly understood. We studied seed dispersal patterns and germination after white‐tailed deer gut passage in a tropical dry forest in southwest Ecuador. Over 23 mo, we recorded ca 2000 seeds of 11 species in 385 fecal samples. Most seeds belonged to four species of Fabaceae: Chloroleucon mangense, Senna mollissima, Piptadenia flava, and Caesalpinia glabrata. Seeds from eight of the 11 species dispersed by white‐tailed deer germinated under controlled conditions. Ingestion did not affect germination of C. mangense and S. mollissima, whereas C. glabrata showed reduced germination. Nevertheless, the removal of fruit pulp resulting from ingestion by white‐tailed deer could have a deinhibition effect on germination due to seed release. Thus, white‐tailed deer play an important role as legitimate seed dispersers of woody species formerly considered autochorous. Our results suggest that more research is needed to fully understand the ecological and evolutionary effects of the remaining extant megafauna on plant regeneration dynamics in the dry Neotropics.  相似文献   

3.
Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle‐specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle‐specific promoter could be used to increase seed size, leading to grain yield improvement in rice.  相似文献   

4.
5.
Summary Seed from homozygous recessivems 1 genetic male-sterile soybean (Glycine max (L.) Merr.) plants was studied for frequencies of polyembryonic seedlings and different levels of polyploidy among abnormal seedlings from six different source populations: Amesms 1 (Ams), North Carolinams 1 (NCms), Tonicams 1 (Tms), Urbanams 1 (Ums), and F4 generation seed obtained from crosses ofms 1 to two chromosome interchange lines (Ams x Clark T/T and Ums x KS-172-11-3). Frequencies of polyembryony observed in Tms, Ums, Ams, NCms, F4 seed from Ams x Clark T/T, and F4 seed from Ums x KS-172-11-3 were 3.6%, 2.4%, 3.1%, 2.5%, 2.2% and 0.1%, respectively. Frequencies of abnormal seedlings from these six sources varied from 1.7% (Ums X KS-172-11-3) to 16.8% (Ams X Clark T/T). Frequencies of polyploids among the abnormal seedlings ranged from 6.8% in Ums x Ks-172-11-3 to 66.7% in Tms. On average, the frequency of polyploid individuals from monoembryonic seedlings was 1.22%. Chromosome number of these seedlings varied from 20 to 200. Variation of the frequencies of polyembryonic seedlings and polyploid progeny among abnormal seedlings suggested that the mechanism(s) controlling the characters of polyembryony and formation of polyploids was associated with thems 1 gene and was affected by other gene(s) or environmental factors.Joint contribution: Agricultural Research Service, US Department of Agriculture, and Journal Paper No. J-11255 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA. Project 2471  相似文献   

6.
Pulsatilla vulgaris Mill. (Ranunculaceae) is a rare and rapidly declining grassland community species that was once widespread at a time when Central Germany was covered by steppe vegetation. Through the course of this study, the patterns of random-amplified polymorphic DNA (RAPD) variation among 11 populations of varying size were analysed to assess any possible local differentiation, in relation to spatial isolation, resulting from random genetic drift brought on by reduced population size and lack of migration between geographically isolated populations. Following results attained from methods including: multivariate analysis based on asymmetric Soerensen similarity, φST-statistics, and analysis of molecular variance, we were able to conclude that there is a high within-population variability (84.4%) and a weak, but significant, differentiation among populations (φST=0.17). A matrix correlation between genetic and geographical distances revealed that geographical differentiation was reflected in the RAPD profile (Mantel test: r=0.47,p=0.002). Further significant correlations were noted between population size and both percentage of polymorphic loci (p=0.02) and genetic diversity (p=0.03). An additional analysis of seed production showed that mean seed set, seed number, and mean seed mass per population could be attributed to differences in population size, whereas only seed mass was related to genetic variation.  相似文献   

7.
The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The β-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola.  相似文献   

8.
Immature embryos of sawtooth oak (Quercus acutissima Carruth.) were obtained from five seed families and cultured on modified Murashige and Skoog nutrient medium containing 1 g/l l-glutamine and 5 mM proline and supplemented with 1.0 mg/l indole-3-butyric acid and 1.0 mg/l 6-benzylaminopurine. The frequency of somatic embryogenesis from immature embryos was a function of the collection date and seed family. The highest frequency of explants forming somatic embryos was obtained with seeds of family Chungnam 11, i.e. 7 weeks post-fertilization (90.9%) and 9 weeks post-fertilization (91.2%). No response was shown by families Chungnam 14, 15 and Jeonbook 29 (0%), at 10 weeks post fertilization. During germination, the highest frequency of epicotyl formation was obtained with Chungnam 11 (44.0%) or Chungnam 15 (43.5%), and the highest rate of radicle formation was shown by Chungnam 11 (26.1%). The most responsive seed family with respect to the formation of both epicotyl (43.5%) and radicle (26.1%) was Chungnam 11. Twenty plantlets were transplanted to a perlite:peatmoss:vermiculite (1:1:1) soil mixture, and 8 plants survived in the field. Received: 6 December 1996 / Revised version received: 18 April 1997 / Accepted: 10 May 1997  相似文献   

9.
The nad7 gene, encoding subunit 7 of NADH dehydrogenase, is mitochondrially encoded in seed plants. In the liverwort, Marchantia polymorpha, only a pseudogene is located in the mitochondrial genome. We have now identified the functional nad7 gene copy in the nuclear genome of Marchantia, coding for a polypeptide of 468 amino acids. The nuclear-encoded nad7 has lost the two group II introns present in the mitochondrial pseudogene copy. Instead, a typical nuclear intron is found to split an exon encoding the presumptive mitochondrial targeting signal peptide and the mature subunit 7 of NADH dehydrogenase. These results suggest that RNA-mediated gene transfer from the mitochondrial into the nuclear genome occurs not only in seed plants but also in bryophytes. Received: 11 March 1997 / Accepted: 20 August 1997  相似文献   

10.
Mapping minor QTL for increased stearic acid content in sunflower seed oil   总被引:1,自引:0,他引:1  
Increased stearic acid (C18:0) content in the seed oil of sunflower would improve the oil quality for some edible uses. The sunflower line CAS-20 (C18:0 genotype Es1Es1es2es2), developed from the high C18:0 mutant line CAS-3 (C18:0 genotype es1es1es2es2; 25% C18:0), shows increased C18:0 levels in its seed oil (8.6%). The objective of this research was to map quantitative trait loci (QTL) conferring increased C18:0 content in CAS-20 in an F2 mapping population developed from crosses between HA-89 (wild type Es1Es1Es2Es2; low C18:0) and CAS-20, which segregates independently of the macromutation Es1 controlling high C18:0 content in CAS-3. Seed oil fatty acid composition was measured in the F2 population by gas-liquid chromatography. A genetic linkage map of 17 linkage groups (LGs) comprising 80 RFLP and 19 SSR marker loci from this population was used to identify QTL controlling fatty acid composition. Three QTL affecting C18:0 content were identified on LG3, LG11, and LG13, with all alleles for increased C18:0 content inherited from CAS-20. In total, these QTL explained 43.6% of the C18:0 phenotypic variation. Additionally, four candidate genes (two stearate desaturase genes, SAD6 and SAD17, and a FatA and a FatB thioesterase gene) were placed on the QTL map. On the basis of positional information, QTL on LG11 was suggested to be a SAD6 locus. The results presented show that increased C18:0 content in sunflower seed oil is not a simple trait, and the markers flanking these QTL constitute a powerful tool for plant breeding programs.  相似文献   

11.
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over‐expression induced production of more cells in the seed coat, leading to an 11–48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over‐expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over‐expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.  相似文献   

12.
We investigated the spatial and temporal expression patterns of two rice calcium-dependent protein kinases (CDPKs), OsCDPK2 and OSCDPK11, using isoform-specific antisera. Bands of the expected molecular sizes for OsCDPK2 (59 kDa) and OsCDPK11 (61 kDa) were detected on western blots. OsCDPK2 and OsCDPK11 mRNA and protein levels increased in unison during flower development. However, at the onset of seed development, the protein expression profiles diverged significantly. OsCDPK2 protein was expressed at low levels during early seed development, but increased to high levels that were maintained in later stages (20 days after fertilisation, DAF). Conversely, OsCDPK11 protein levels were high at the beginning of seed development, but fell rapidly from 10 DAF onwards. This decrease in the level of OsCDPK11 protein was associated with the abundant synthesis of a truncated mRNA species. OsCDPK2 expression was also closely associated with light perception. OsCDPK2 protein was barely detectable in green leaves exposed to light, but levels increased sharply when plants were shifted to darkness. Initially, this increase reflected a rapid elevation in the levels of OsCDPK2 mRNA, which was normally located in the mesophyll. Conversely, OsCDPK11 mRNA and protein levels were unaffected by light. These data strongly indicate that two rice CDPK isoforms have different functions in seed development and in response to light in leaves.  相似文献   

13.
Transport of photoassimilates from leaf tissues (source regions) to the sink organs is essential for plant development. Here, we show that a phytohormone, the brassinosteroids (BRs) promotes pollen and seed development in rice by directly promoting expression of Carbon Starved Anther (CSA) which encodes a MYB domain protein. Over‐expression of the BR‐synthesis gene D11 or a BR‐signaling factor OsBZR1 results in higher sugar accumulation in developing anthers and seeds, as well as higher grain yield compared with control non‐transgenic plants. Conversely, knockdown of D11 or OsBZR1 expression causes defective pollen maturation and reduced seed size and weight, with less accumulation of starch in comparison with the control. Mechanically, OsBZR1 directly promotes CSA expression and CSA directly triggers expression of sugar partitioning and metabolic genes during pollen and seed development. These findings provide insight into how BRs enhance plant reproduction and grain yield in an important agricultural crop.  相似文献   

14.
Seeds were collected and compared from parent plants of Bromusrubens L. (Poaceae), an exotic Mojave Desert annual grass, grown in ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2 to determine if parental CO2 growth conditions affected seed quality. Performance of seeds developed on the above plants was evaluated to determine the influence of parental CO2 growth conditions on germination, growth rate, and leaf production. Seeds of B. rubens developed on parents grown in elevated CO2 had a larger pericarp surface area, higher C:N ratio, and less total mass than ambient-developed seeds. Parental CO2 environment did not have an effect on germination percentage or mean germination time, as determined by radicle emergence. Seedlings from elevated-CO2-developed seeds had a reduced relative growth rate and achieved smaller final mass over the same growth period. Elevated-CO2-developed seeds had smaller seed reserves than ambient seeds, as determined by growing seedlings in sterile media and monitoring senescence. It appears that increased seed C:N ratios associated with plants grown under elevated CO2 may have a major effect on seed quality (morphology, nutrition) and seedling performance (e.g., growth rate and leaf production). Since the invasive success of B. rubens is primarily due to its ability to rapidly germinate, increase leaf area and maintain a relatively high growth rate compared to native annuals and perennial grasses, reductions in seed quality and seedling performance in elevated CO2 may have significant impacts on future community composition in the Mojave Desert. Received: 11 April 1997 / Accepted: 20 November 1997  相似文献   

15.
Seed-specific,developmentally regulated genes of peanut   总被引:6,自引:0,他引:6  
Four cDNAs of seed-specific and developmentally regulated peanut (Arachis hypogaea L.) genes were identified by differential screening of a peanut-seed cDNA library using cDNA probes constructed from mRNAs isolated from immature and mature stages of the seed. Northern analysis, probed with the four cloned cDNAs, indicated that the genes represented by two cDNAs were expressed abundantly early in seed development, while another two were abundantly expressed later at the cell-expansion stages of seed development. These four genes did not show expression in roots, pegs or leaves. However, one of the early expressed genes was seed coat-specific. One of the clones, Psc11, had significant sequence similarity to subtilisin-like genes in Arabidopsis and soybean. Clones Psc32 and Psc33 had significant similarity to the peanut allergen genes Ara h II and Ara h 6, respectively. The sequence of clone Psc12 was unique and did not show significant similarity to any sequence in the databases. One of the four seed-specific clones showed restriction fragment length polymorphism (RFLP) among peanut lines representing the four peanut botanical varieties. These findings indicate that polymorphism exists in peanut seed-storage genes. This contrasts with other genes previously used for genetic mapping of cultivated peanut. Received: 1 September 2000 / Accepted: 4 May 2001  相似文献   

16.
Risk of alfalfa transgene dissemination and scale-dependent effects   总被引:1,自引:0,他引:1  
Pollen can function as a vehicle to disseminate introduced, genetically engineered genes throughout a plant population or into a related species. The measurement of the risk of inadvertent dispersal of transgenes must include the assessment of accidental dispersion of pollen. Factors to be considered include the rate of pollen spread, the maximal dispersion distance of pollen, and the spatial dynamics of pollen movement within seed production fields; none of which are known for alfalfa (Medicago sativa L.), an insect-pollinated crop species. Using a rare, naturally occurring molecular marker, alfalfa pollen movement was tracked from seed and hay production fields. Results indicated that leafcutter bees (Megachile spp.) used in commercial seed production show a directional, non-random bias when pollinating within fields, primarily resulting in the movement of pollen directly towards and away from the bee domicile. Within-field pollen movement was detected only over distances of 4 m or less. Dispersal of pollen from alfalfa hay and seed production fields occurs at distances up to 1000 m. By examining widely dispersed, individual escaped alfalfa plants and their progeny using RAPD markers, gene movement among escaped alfalfa plants has been confirmed for distances up to 230 m. The outcrossing frequency for large fields was nearly 10-times greater than that of research-sized plots. A minimum isolation distance of 1557 m may be required to prevent gene flow in alfalfa. Data suggest that complete containment of transgenes within alfalfa seed or hay production fields would be highly unlikely using current production practices. Received: 20 March 1999 / Accepted: 11 November 1999  相似文献   

17.
 Chickpea (Cicer arietinum L.) ranks third in the world, and first in the Mediterranean basin, for production among pulses. Despite its importance as a crop and considerable research effort, traditional breeding methods have so far been unable to produce cultivars with a large impact on chickpea production. Interspecific hybridization is known to improve yield in many crops. Therefore, an attempt was made to increase the seed yield in chickpea through the introgression of genes from wild relatives at the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, from 1987 to 1995. Four crosses, ILC 482 (C. arietinum)×ILWC 179 (C. echinospermum) and ILC 482×ILWC 124 (C. reticulatum) and their reciprocals, were made. Pedigree selection was used to advance the material. Heterosis was recorded visually in F1s, and single plant measurements for seed yield were recorded in F2 populations. Promising and uniform progenies were bulked in the F5 generation. Out of 96 F6 lines, 22 were selected on the basis of seed yield and other agronomic characters, and evaluated in a replicated trial for seed yield and 14 agronomical, morphological and quality characters. A high level of heterosis was observed in F1s. Several F2 plants produced two to three times more seed yield than the best plant from the cultigen. Nine F7 lines out-yielded the cultigen parent by up to 39%. Over 2 years, 12 lines had a higher yield than the cultigen parent. These lines were not only high yielding but also free of any known undesirable traits from the wild species, such as spreading growth habit, pod dehiscence, and non-uniform maturity. Quality traits, such as seed shape, type, colour, weight, and testa texture, protein content, cooking time and an organoleptic test of a Middle East dish, Homos Bi-Tehineh, were also similar to the cultigen parent. Both C. echinospermum and C. reticulatum contributed towards the increased yield. Received: 11 July 1996 / Accepted: 15 November 1996  相似文献   

18.
Electrophoretic analyses of non-reduced and reduced seed storage proteins from Solanaceae and Cucurbitaceae species and cultivars were performed. High molecular disulfide bonded complexes between intermediary subunits of 11S globulins previously detected in Capsicum annuum cultivars, were found in Solanum melongena cultivars as well. The data obtained might be used for further elucidation of peculiarities of the 11S globulins in dicotyledonous plants.  相似文献   

19.
Seed oils enriched in omega‐7 monounsaturated fatty acids, including palmitoleic acid (16:1?9) and cis‐vaccenic acid (18:1?11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega‐7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ?9 desaturation of stearoyl (18:0)‐acyl carrier protein (ACP) to ?9 desaturation of palmitoyl (16:0)‐acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed‐specific co‐expression of a mutant ?9‐acyl‐ACP and an acyl‐CoA desaturase with high specificity for 16:0‐ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega‐7 monounsaturated fatty acids were obtained. Further increases in omega‐7 fatty acid accumulation to 60–65% of the total fatty acids in camelina seeds were achieved by inclusion of seed‐specific suppression of 3‐keto‐acyl‐ACP synthase II and the FatB 16:0‐ACP thioesterase genes to increase substrate pool sizes of 16:0‐ACP for the ?9‐acyl‐ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.  相似文献   

20.
以玉兰(Magnolia denudata Desr.)发育成熟的种子为材料,采用水蒸气蒸馏法和GC-MS技术对其肉质外种皮化学成分的种类和含量进行了分析研究,并就玉兰肉质外种皮对其种子吸水和失水的影响以及化感作用进行比较研究,以探讨其相应的生态学和生物学功能。结果表明:(1)玉兰肉质外种皮占整个完整种子重量的48.25%,有无肉质外种皮对其种子自身吸水没有明显影响,但在失水过程中有肉质外种皮的种子失水较慢,具有一定的保水作用。(2)玉兰种子肉质外种皮中萜烯类和醇类的种类较多,分别有12种和11种;但酮类和酯类的相对含量较高,分别为32.84%和18.03%,其中含量较多的成分依次是甲基庚烯酮(31.95%)、乙酸丁酯(17.69%)、对伞花烃(13.64%)和芳樟醇(6.61%)。(3)玉兰肉质外种皮浸提液对豌豆、白菜种子萌发具有明显的抑制作用,且随着浸提液浓度增加,豌豆种子发芽率由86.7%下降为6.0%,白菜种子发芽率由28.0%下降为0。研究推测,玉兰种子的肉质外种皮在功能上可能是一种类似肉质果果肉的结构,具有丰富的化学成分,不仅可以吸引鸟类传播其种子,也具有一定的化感作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号