首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helicobacter pylori is the causative agent of chronic gastritis, peptic ulcer, and gastric malignancies. A number of virulence factors have been described including several adhesins, a cytotoxin, neutrophil-activating protein, and expression of binding of extracellular matrix proteins, like collagen type IV, laminin, and vitronectin. H. pylori strains commonly express binding of soluble plasminogen. Coccoid forms also express binding. Plasminogen binding was optimal at pH 7.0. The binding is mediated by two cell surface proteins of 42 and 57 kDa. Scatchard plot analysis showed a straight line with a K(d) of 7 x 10(-7) M. Lysine and E-aminocaproic acid inhibited binding. The binding domain on the plasminogen molecule is the fifth kringle, miniplasminogen. Plasminogen is converted to plasmin by tissue plasminogen activator. During H. pylori infection the activity of tissue plasminogen activator is decreased and that of urokinase increased. This is reversed after eradication therapy. The plasminogen binding and conversion to plasmin is the only proteolytic activity of H. pylori, and may enhance tissue penetration and be involved in carcinogenesis.  相似文献   

2.
Protein-protein interactions among Helicobacter pylori cag proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.  相似文献   

3.
MOTIVATION: A large, high-quality database of homologous sequence alignments with good estimates of their corresponding phylogenetic trees will be a valuable resource to those studying phylogenetics. It will allow researchers to compare current and new models of sequence evolution across a large variety of sequences. The large quantity of data may provide inspiration for new models and methodology to study sequence evolution and may allow general statements about the relative effect of different molecular processes on evolution. RESULTS: The Pandit 7.6 database contains 4341 families of sequences derived from the seed alignments of the Pfam database of amino acid alignments of families of homologous protein domains (Bateman et al., 2002). Each family in Pandit includes an alignment of amino acid sequences that matches the corresponding Pfam family seed alignment, an alignment of DNA sequences that contain the coding sequence of the Pfam alignment when they can be recovered (overall, 82.9% of sequences taken from Pfam) and the alignment of amino acid sequences restricted to only those sequences for which a DNA sequence could be recovered. Each of the alignments has an estimate of the phylogenetic tree associated with it. The tree topologies were obtained using the neighbor joining method based on maximum likelihood estimates of the evolutionary distances, with branch lengths then calculated using a standard maximum likelihood approach.  相似文献   

4.
A novel apoptosis-inducing protein from Helicobacter pylori   总被引:4,自引:0,他引:4  
Helicobacter pylori infection induces apoptosis in gastric epithelial cells. Here, we report a novel apoptosis-inducing protein that functions as a leading factor in H. pylori-mediated apoptosis induction. We purified the protein from H. pylori by separating fractions that showed apoptosis-inducing activity. This protein induced apoptosis of AGS cells in a dose-dependent manner. The purified protein consisted of two protein fragments with molecular masses of about 40 and 22 kDa, which combined to constitute a single complex in their natural form. N-terminal sequencing indicated that both these protein fragments were encoded by the HP1118 gene. The purified protein exhibited gamma-glutamyl transpeptidase activity, the inhibition of which by 6-diazo-5-oxo-l-norleucine resulted in a complete loss of apoptosis-inducing activity. To the best of our knowledge, the apoptosis-inducing function is a newly identified physiological role for bacterial gamma-glutamyl transpeptidase. The apoptosis-inducing activity of the isogenic mutant gamma-glutamyl transpeptidase-deficient strain was significantly lower compared with that of the parent strain, demonstrating that gamma-glutamyl transpeptidase plays a significant role in H. pylori-mediated apoptosis. Our findings provide new insights into H. pylori pathogenicity and reveal a novel aspect of the bacterial gamma-glutamyl transpeptidase function.  相似文献   

5.
6.
The aim of this study was to evaluate whether there was any correlation between Helicobacter pylori-associated diseases and (1) H. pylori virulence genes or (2) IL-1B, IL-1RN, IFN-G, TNF-A, IL-10 genetic polymorphisms. Patients with non-cardia gastric cancer (NCGC, n=129) or benign gastroduodenal diseases (n=792) were studied. IL-1RN intron 2 VNTR polymorphism (PCR), IL-1B -31 C/T (RFLP), the SNPs of IFN-G (+874 A/T), TNF-A (-1031 C/T, -857 C/T, -376 A/G, -308 A/G, -238 A/G), IL-10 (-1082 A/G, -819 C/T, -592 A/C) (Taqman chemistry) were studied. cagA, s1 and m1 vacA, were PCR amplified. Duodenal ulcer was more frequent in TNF-A -857 TT and in IL-1RN 1,2 subjects. TNF-A -857 TT genotype was also correlated with gastric ulcer. IL-10 -819 TT genotype was associated with intestinal metaplasia and NCGC. Antral inflammation was associated with TNF-A -1031 TT, while corpus activity with IL-10 -819 CC. H. pylori infection was associated with TNF-A -308 AG genotype, while IFN-G +874 AA genotype was associated with cagA. In conclusion, among host genetic factors contributing to H. pylori disease outcome, IFN-G +874 AA genotype favors cagA positive infections, TNF-A -857 TT duodenal ulcer while IL-10 -819 TT intestinal metaplasia and NCGC.  相似文献   

7.
Helicobacter pylori is a Gram-negative pathogenic microaerophile with a particular tropism for the mucosal surface of the gastric epithelium. Despite its obligatory microaerophilic character, it can metabolize d -glucose and/or d -galactose in both oxidative and fermentative pathways via a Na+-dependent secondary active transport, a glucokinase and enzymes of the pentose phosphate pathway. We have assigned the Na+-dependent transport of glucose to the protein product of the H. pylori 1174 gene. The gene was heterologously expressed in a glucose transport-deficient Escherichia coli strain, where transport activities of radiolabelled d -glucose, d -galactose and 2-deoxy- d -glucose were restored, consistent with the expected specificity of the hexose uptake system in H. pylori . d -Mannose was also identified as a substrate. The HP1174 transport protein was purified and reconstituted into proteoliposomes, where sodium dependence of sugar transport activity was demonstrated. Additionally the tryptophan/tyrosine fluorescence of the purified protein showed quenching by 2-deoxy- d -glucose, d -mannose, d -glucose or d -galactose in the presence of sodium ions. This is the first reported purification and characterization of an active glucose transport protein member of the TC 2.1.7 subgroup of the Major Facilitator Superfamily, constituting the route for entry of sugar nutrients into H. pylori . A model is derived of its three-dimensional structure as a paradigm of the family.  相似文献   

8.
Structure of the neutrophil-activating protein from Helicobacter pylori   总被引:7,自引:0,他引:7  
Helicobacter pylori is a major human pathogen associated with severe gastroduodenal diseases, including ulcers and cancers. An H.pylori protein that is highly immunogenic in humans and mice has been identified recently. This protein has been termed HP-NAP, due to its ability of activating neutrophils. In order to achieve a molecular understanding of its unique immunogenic and pro-inflammatory properties, we have determined its three-dimensional structure. Its quaternary structure is similar to that of the dodecameric bacterial ferritins (Dps-like family), but it has a different surface potential charge distribution. This is due to the presence of a large number of positively charged residues, which could well account for its unique ability in activating human leukocytes.  相似文献   

9.
10.
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.  相似文献   

11.
Helicobacter pylori is an important risk factor of duodenal ulcer (DU). Although many virulence factors of H. pylori have been identified, few have been reported to show an association with the pathogenesis of DU. The aims of this study were to identify H. pylori antigens showing a high seropositivity in DU and to develop a platform for rapid and easy diagnosis for DU. Because DU and gastric cancer (GC) are considered clinical divergent gastroduodenal diseases, we compared two-dimensional immunoblots of an acid-glycine extract of an H. pylori strain from a patient with DU probed with serum samples from 10 patients with DU and 10 with GC to identify DU-related antigens. Of the 11 proteins that were strongly recognized by serum IgG from DU patients, translation elongation factor EF-G (FusA), catalase (KatA), and urease alpha subunit (UreA) were identified as DU-related antigens, showing a higher seropositivity in DU samples (n = 124) than in GC samples (n = 95) (FusA, 70.2 versus 45.3%; KatA, 50.8 versus 41.1%; UreA, 44.4 versus 27.4%). In addition, we found that the use of multiple antigens improved the discrimination between patients with DU and those with GC as the odds ratios increased from 1.82 (95% confidence interval (CI), 0.79-4.21; p = 0.1607) for seropositivity for FusA, KatA, or UreA alone to 4.95 (95% CI, 2.05-12.0; p = 0.0004) for two of the three antigens and to 5.71 (95% CI, 1.86-17.6; p = 0.0024) for all three antigens. Moreover a protein array containing the three DU-related antigens was developed to test the idea of using multiple biomarkers in diagnosis. We conclude that FusA, KatA, and UreA are DU-related antigens of H. pylori, and the combination of these on a protein array provided a rapid and convenient method for detecting serum antibody patterns of DU patients.  相似文献   

12.
Protein methylase II (AdoMet:protein-carboxyl O-methyltransferase, EC 2.1.1.24) was identified and purified 115-fold from Helicobacter pylori through Q-Sepharose ion exchange column, AdoHcy-Sepharose 4B column, and Superdex 200 HR column chromatography using FPLC. The purified preparation showed two protein bands of about 78 kDa and 29 kDa molecular mass on SDS-PAGE. On non-denaturing gel electrophoresis, the enzyme migrated as a single band with a molecular mass of 410 kDa. In addition, MALDI-TOF-MS analysis and Superdex 200 HR column chromatography of the purified enzyme showed a major mass signal with molecular mass values of 425 kDa and 430 kDa, respectively. Therefore, the above results led us to suggest that protein methylase II purified from H. pylori is composed of four heterodimers with 425 kDa (4x(78+29)=428 kDa). This magnitude of molecular mass is unusual for protein methylases II so far reported. The enzyme has an optimal pH of 6.0, a K(m) value of 5.0x10(-6) M for S-adenosyl-L-methionine and a V(max) of 205 pmol methyl-(14)C transferred min(-1) mg(-1) protein.  相似文献   

13.
14.
15.
Tumor necrosis factor-alpha (TNF-alpha) inducing protein (Tipalpha) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-alpha and chemokine genes and activation of nuclear factor-kappaB. Since Tipalpha enters gastric cancer cells, the Tipalpha binding molecules in the cells should be investigated. The direct DNA-binding activity of Tipalpha was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tipalpha and DNA, revealed that the affinity of Tipalpha for (dGdC)10 is 2400 times stronger than that of del-Tipalpha, an inactive Tipalpha. This suggests a strong correlation between DNA-binding activity and carcinogenic activity of Tipalpha. And the DNA-binding activity of Tipalpha was first demonstrated with a molecule secreted from H. pylori.  相似文献   

16.
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.  相似文献   

17.
克隆表达幽门螺杆菌(Hp)的尿素酶B亚单位(UreB)重组蛋白,可为Hp疫苗开发和快速诊断试剂盒的研究奠定基础。用PCR方法由幽门螺杆菌染色体DNA扩增UreB基因片段,将其融合插入原核表达载体pQE30中,并在M15大肠杆菌表达。经酶切、测序分析,包括部分融合载体基因在内的重组UreB基因片段由1773bp组成。为编码591个氨基酸残基的多肽。SDS-PAGE分析显示重组表达的目的蛋白相对分子量约为66kD,表达量点菌体总蛋白的23.5%,并经免疫印迹分析证实被幽门螺杆菌感染的阳性血清可与纯化UreB重组蛋白发生特异性的结合反应。UreB重组蛋白具有良好的抗原性,将有可能成为一种有效蛋白质疫苗以及快速诊断试剂盒用于Hp感染的防治和检测。  相似文献   

18.
Helicobacter pylori persistently colonize the human stomach and have been linked to atrophic gastritis and gastric carcinoma. Although it is well known that H. pylori infection can result in hypochlorhydria, the molecular mechanisms underlying this phenomenon remain poorly understood. Here we show that VacA permeabilizes the apical membrane of gastric parietal cells and induces hypochlorhydria. The functional consequences of VacA infection on parietal cell physiology were studied using freshly isolated rabbit gastric glands and cultured parietal cells. Secretory activity of parietal cells was judged by an aminopyrine uptake assay and confocal microscopic examination. VacA permeabilization induces an influx of extracellular calcium, followed by activation of calpain and subsequent proteolysis of ezrin at Met(469)-Thr(470), which results in the liberation of ezrin from the apical membrane of the parietal cells. VacA treatment inhibits acid secretion by preventing the recruitment of H,K-ATPase-containing tubulovesicles to the apical membrane of gastric parietal cells. Electron microscopic examination revealed that VacA treatment disrupts the radial arrangement of actin filaments in apical microvilli due to the loss of ezrin integrity in parietal cells. Significantly, expression of calpain-resistant ezrin restored the functional activity of parietal cells in the presence of VacA. Proteolysis of ezrin in VacA-infected parietal cells is a novel mechanism underlying H. pylori-induced inhibition of acid secretion. Our results indicate that VacA disrupts the apical membrane-cytoskeletal interactions in gastric parietal cells and thereby causes hypochlorhydria.  相似文献   

19.
Background. The bacterium Helicobacter pylori is associated with a number of gastrointestinal diseases, such as gastric ulcer, duodenal ulcer and gastric cancer. Several histological changes may be observed during the course of infection; some may influence the progression towards cancer. The aim of this study was to build a statistical model to discover direct interactions between H. pylori and different precancerous changes of the gastric mucosa, and in what order and to what degree those may influence the development of the intestinal type of gastric cancer. Methods. To find direct and indirect interactions between H. pylori and different histological variables, log‐linear analyses were used on a case–control study. To generate mathematically and biologically relevant statistical models, a designed algorithm and observed frequency tables were used. Results. The results show that patients with H. pylori infection need to present with proliferation and intestinal metaplasia to develop gastric cancer of the intestinal type. Proliferation and intestinal metaplasia interacted with the variables atrophy and foveolar hyperplasia. Intestinal metaplasia was the only variable with direct interaction with gastric cancer. Gender had no effect on the variables examined. Conclusion. The direct interactions observed in the final statistical model between H. pylori, changes of the mucosa and gastric cancer strengthens and supports previous theories about the progression towards gastric cancer. The results suggest that gastric cancer of the intestinal type may develop from H. pylori infection, proliferation and intestinal metaplasia, while atrophy and foveolar hyperplasia interplay with the other histological variables in the disease process.  相似文献   

20.
幽门螺杆菌外膜蛋白25基因的克隆及序列分析   总被引:4,自引:0,他引:4  
目的 克隆幽门螺杆菌(Helicobacter pylori,Hp)外膜蛋白25(OMP25)基因,并对其进行序列分析。方法 利用PCR技术扩增OMP25基因,并将其定向插入pET-22b(+)载体中,以DNA自动序列分析仪进行核苷酸分析。结果 DNA序列分析表明,所克隆的OMP25基因序列与GeneBank公布的一致。结论 该研究获得了序列正确的幽门螺杆菌OMP25基因,为其重组表达及其棚关研究奠定了良好基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号