首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endocannabinoids are bioactive lipids, that comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied endocannabinoids, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol, the psychoactive principle of hashish and marijuana. It is known that the activity of endocannabinoids at their receptors is limited by cellular uptake through specific membrane transporters, followed by intracellular degradation by a fatty acid amide hydrolase (for AEA and partly 2-AG) or by a monoacylglycerol lipase (for 2-AG). Together with AEA, 2-AG and congeners, the proteins that bind, transport and metabolize these lipids form the "endocannabinoid system". This new system will be briefly presented in this review, in order to put in a better perspective the role of the endocannabinoid pathway in neurodegenerative disorders, like Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of endocannabinoid receptors, or of inhibitors of endocannabinoid metabolism, as next-generation therapeutics will be discussed.  相似文献   

2.
The purpose of this review is to discuss the cellular synthesis and inactivation of two putative endogenous ligands of the cannabinoid receptor, N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG). Both ligands are synthesized by neurons and brain tissue in response to increased intracellular calcium concentrations. Both ligands are substrates for fatty acid amide hydrolase (FAAH). Both AEA and 2-AG bind to the neuronal form of the cannabinoid receptor (CB1). AEA binds the receptor with moderate affinity and has the characteristics of a partial agonist, whereas, 2-AG binds with low affinity but exhibits full efficacy. Two possible physiological roles of the endocannabinoids and the CB1 receptor are discussed: the regulation of gestation and the regulation of gastrointestinal motility.  相似文献   

3.
Investigations of the pathways involved in the metabolism of endocannabinoids have grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The in vivo biosynthesis of AEA has been shown to occur through several pathways mediated by N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD), a secretory PLA(2) and PLC. 2-AG, a second endocannabinoid is generated through the action of selective enzymes such as phosphatidic acid phsophohydrolase, diacylglycerol lipase (DAGL), phosphoinositide-specific PLC (PI-PLC) and lyso-PLC. A putative membrane transporter or facilitated diffusion is involved in the cellular uptake or release of endocannabinoids. AEA is metabolized by fatty acid amidohydrolase (FAAH) and 2-AG is metabolized by both FAAH and monoacylglycerol lipase (MAGL). The author presents an integrative overview of current research on the enzymes involved in the metabolism of endocannabinoids and discusses possible therapeutic interventions for various diseases, including addiction.  相似文献   

4.
Macrophage-derived endocannabinoids have been implicated in endotoxin (lipopolysaccharide (LPS))-induced hypotension, but the endocannabinoid involved and the mechanism of its regulation by LPS are unknown. In RAW264.7 mouse macrophages, LPS (10 ng/ml) increases anandamide (AEA) levels >10-fold via CD14-, NF-kappaB-, and p44/42-dependent, platelet-activating factor-independent activation of the AEA biosynthetic enzymes, N-acyltransferase and phospholipase D. LPS also induces the AEA-degrading enzyme fatty acid amidohydrolase (FAAH), and inhibition of FAAH activity potentiates, whereas actinomycin D or cycloheximide blocks the LPS-induced increase in AEA levels and N-acyltransferase and phospholipase D activities. In contrast, cellular levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are unaffected by LPS but increased by platelet-activating factor. LPS similarly induces AEA, but not 2-AG, in mouse peritoneal macrophages where basal AEA levels are higher, and the LPS-stimulated increase in AEA is potentiated in cells from FAAH-/- as compared with FAAH+/+ mice. Intravenous administration of 107 LPS-treated mouse macrophages to anesthetized rats elicits hypotension, which is much greater in response to FAAH-/- than FAAH+/+ cells and is susceptible to inhibition by SR141716, a cannabinoid CB1 receptor antagonist. We conclude that AEA and 2-AG synthesis are differentially regulated in macrophages, and AEA rather than 2-AG is a major contributor to LPS-induced hypotension.  相似文献   

5.
The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the γ-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-γ-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the γ-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.  相似文献   

6.
Delta(9)-Tetrahydrocannabinol (Delta(9)-THC) is the major psychoactive component of marijuana and elicits pharmacological actions via cannabinoid receptors. Anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG) are endogenous ligands for cannabinoid receptors, which because of their structural similarities to arachidonic acid (AA), AEA, and 2-AG could serve as substrates for lipoxygenases and cyclooxygenases (COXs) that metabolize polyunsaturated fatty acids to potent bioactive molecules. In this study, we have compared the effects of Delta(9)-THC, AEA, 2-AG, and another cannabinoid agonist, indomethacin morpholinylamide (IMMA), on lipopolysaccharide (LPS)-induced NO, IL-6, and PGE(2) release from J774 macrophages. Delta(9)-THC, IMMA, and AEA diminish LPS-induced NO and IL-6 production in a concentration-dependent manner. 2-AG inhibits the production of IL-6 but slightly increases iNOS-dependent NO production. Delta(9)-THC and IMMA also inhibit LPS-induced PGE(2) production and COX-2 induction, while AEA and 2-AG have no effects. These discrepant results of 2-AG on iNOS and COX-2 induction might be due to its bioactive metabolites, AA and PGE(2), whose incubation cause the potentiation of both iNOS and COX-2 induction. On the contrary, the AEA metabolite, PGE(2)-ethanolamide, influences neither the LPS-induced NO nor IL-6 production. Taken together, direct cannabinoid receptor activation leads to anti-inflammatory action via inhibition of macrophage function. The endogenous cannabinoid, 2-AG, also serves as a substrate for COX-catalyzing PGE(2) production, which in turn modulates the action of CB2.  相似文献   

7.
It is not yet clear if the endocannabinoid 2-arachidonoylglycerol (2-AG) is transported into cells through the same membrane transporter mediating the uptake of the other endogenous cannabinoid, anandamide (N-arachidonoylethanolamine, AEA), and whether this process (a) is regulated by cells and (b) limits 2-AG pharmacological actions. We have studied simultaneously the facilitated transport of [14C]AEA and [3H]2-AG into rat C6 glioma cells and found uptake mechanisms with different efficacies but similar affinities for the two compounds (Km 11.0 +/- 2.0 and 15.3 +/- 3.1 microM, Bmax 1.70 +/- 0.30 and 0.24 +/- 0.04 nmol.min-1.mg protein-1, respectively). Despite these similar Km values, 2-AG inhibits [14C]AEA uptake by cells at concentrations (Ki = 30.1 +/- 3.9 microM) significantly higher than those required to either 2-AG or AEA to inhibit [3H]2-AG uptake (Ki = 18.9 +/- 1.8 and 20.5 +/- 3.2 microM, respectively). Furthermore: (a) if C6 cells are incubated simultaneously with identical concentrations of [14C]AEA and [3H]2-AG, only the uptake of the latter compound is significantly decreased as compared to that observed with [3H]2-AG alone; (b) the uptake of [14C]AEA and [3H]2-AG by cells is inhibited with the same potency by AM404 (Ki = 7.5 +/- 0.7 and 10.2 +/- 1.7 microM, respectively) and linvanil (Ki = 9.5 +/- 0.7 and 6.4 +/- 1.2 microM, respectively), two inhibitors of the AEA membrane transporter; (c) nitric oxide (NO) donors enhance the uptake of both [14C]AEA and [3H]2-AG, thus suggesting that 2-AG action can be regulated through NO release; (d) AEA and 2-AG induce a weak release of NO that can be blocked by a CB1 cannabinoid receptor antagonist, and significantly enhanced in the presence of AM404 and linvanil, thus suggesting that transport into C6 cells limits the action of both endocannabinoids.  相似文献   

8.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

9.
Treatment of intact human neuroblastoma CHP100 cells with anandamide (arachidonoylethanolamide, AEA) or 2-arachidonoylglycerol (2-AG) inhibits intracellular fatty acid amide hydrolase (FAAH). This effect was not associated with covalent modifications of FAAH, since specific inhibitors of farnesyltransferase, kinases, phosphatases, glycosyltransferase or nitric oxide synthase were ineffective. Electrophoretic analysis of (33)P-labelled proteins, Western blot with anti-phosphotyrosine antibodies, and glycan analysis of cellular proteins confirmed the absence of covalent modifications of FAAH. The inhibition by AEA was paralleled by an increased arachidonate release, which was not observed upon treatment of cells with linoleoylethanolamide, palmitoylethanolamide, or oleoylethanolamide. Moreover, cell treatment with AEA or 2-AG increased the activity of cyclooxygenase and 5-lipoxygenase, and the hydro(pero)xides generated from arachidonate by lipoxygenase were shown to inhibit FAAH, with inhibition constants in the low micromolar range. Consistently, inhibitors of 5-lipoxygenase, but not those of cyclooxygenase, significantly counteracted the inhibition of FAAH by AEA or 2-AG.  相似文献   

10.
N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the two proposed endogenous agonists of cannabinoid receptors, and the putative AEA biosynthetic precursor, N-arachidonoylphosphatidylethanolamine (NArPE), were identified in bovine retina by means of gas chromatography-electron impact mass spectrometry (GC-EIMS). This technique also allowed us to identify N-docosahexanoylethanolamine (DHEA) and 2-docosahexanoylglycerol (2-DHG), two derivatives of docosahexaenoic acid (DHA), one of the most abundant fatty acids esterified in retina phospholipids and necessary for optimal retinal function. N-Docosahexaenoylphosphatidylethanolamine (NDHPE), the potential biosynthetic precursor for DHEA, was also found. The fatty acid composition of the sn-1 and sn-2 positions of bovine retina's most abundant phospholipid classes, also determined here, were in agreement with a phospholipid-dependent mechanism for 2-AG, 2-DHG, AEA, and DHEA biosynthesis, as very high levels of polyunsaturated fatty acids, including DHA, were found on the sn-2 position of phosphatidylcholine (PC) and -ethanolamine (PE), and measurable amounts of di-docosahexanoyl-PC and -PE, two potential biosynthetic precursors of NDHPE, were detected. Accordingly, we found that isolated particulate fractions from bovine retina could release AEA and DHEA in a time-dependent fashion. Finally, a fatty acid amide hydrolase (FAAH)-like activity with subcellular distribution and pH dependency similar to those reported for the brain enzyme was also detected in bovine retina. This activity was inhibited by FAAH inhibitors, phenylmethylsulfonyl fluoride and arachidonoyltrifluoromethylketone, and appeared to recognize DHEA with a lower efficiency than AEA. These data indicate that AEA and its congeners may play a physiological role in the mammalian eye.  相似文献   

11.
Evidence for the role of the cannabimimetic fatty acid derivatives (CFADs), i.e. anandamide (arachidonoylethanolamide, AEA), 2-arachidonoylglycerol (2-AG) and palmitoylethanolamide (PEA), in the control of inflammation and of the proliferation of tumor cells is reviewed here. The biosynthesis of AEA, PEA, or 2-AG can be induced by stimulation with either Ca(2+) ionophores, lipopolysaccharide, or platelet activating factor in macrophages, and by ionomycin or antigen challenge in rat basophilic leukemia (RBL-2H3) cells (a widely used model for mast cells). These cells also inactivate CFADs through re-uptake and/or hydrolysis and/or esterification processes. AEA and PEA modulate cytokine and/or arachidonate release from macrophages in vitro, regulate serotonin secretion from RBL-2H3 cells, and are analgesic in some animal models of inflammatory pain. However, the involvement of endogenous CFADs and cannabinoid CB(1) and CB(2) receptors in these effects is still controversial. In human breast and prostate cancer cells, AEA and 2-AG, but not PEA, potently inhibit prolactin and/or nerve growth factor (NGF)-induced cell proliferation. Vanillyl-derivatives of anandamide, such as olvanil and arvanil, exhibit even higher anti-proliferative activity. These effects are due to suppression of the levels of the 100 kDa prolactin receptor or of the high affinity NGF receptors (trk), are mediated by CB(1)-like cannabinoid receptors, and are enhanced by other CFADs. Inhibition of adenylyl cyclase and activation of mitogen-activated protein kinase underlie the anti-mitogenic actions of AEA. The possibility that CFADs act as local inhibitors of the proliferation of human breast cancer is discussed here.  相似文献   

12.
Endocannabinoids are a group of biologically active endogenous lipids that have recently emerged as important mediators in energy balance control. The two best studied endocannabinoids, anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) are the endogenous ligands of the central and peripheral cannabinoid receptors. Furthermore, AEA binds to the transient receptor potential vanilloid type-1 (TRPV1), a capsaicin-sensitive, non-selective cation channel. The synthesis of these endocannabinoids is catalyzed by the N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and the sn-1-selective diacylglycerol lipase (DAGL), whereas their degradation is accomplished by the fatty acid amide hydrolase (FAAH) and the monoglyceride lipase (MGL), respectively. We investigated the presence of a functional endocannabinoid system in human adipose tissue from seven healthy subjects. Subcutaneous abdominal adipose tissue underwent biochemical and molecular biology analyses, aimed at testing the expression of this system and its functional activity. AEA and 2-AG levels were detected and quantified by HPLC. Real time PCR analyzed the expression of the endocannabinoid system and immunofluorescence assays showed the distribution of its components in the adipose tissue. Furthermore, binding assay for the cannabinoid and vanilloid receptors and activity assay for each metabolic enzyme of the endocannabinoid system gave clear evidence of a fully operating system. The data presented herein show for the first time that the human adipose tissue is able to bind AEA and 2-AG and that it is endowed with the biochemical machinery to metabolize endocannabinoids.  相似文献   

13.
Although endocannabinoids are important players in nociception and obesity, their roles as immunomodulators remain elusive. The main endocannabinoids described to date, namely 2-arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA), induce an intriguing profile of pro- and anti-inflammatory effects. This could relate to cell-specific cannabinoid receptor expression and/or the action of endocannabinoid-derived metabolites. Importantly, 2-AG and AEA comprise a molecule of arachidonic acid (AA) in their structure and are hydrolyzed rapidly. We postulated the following: 1) the released AA from endocannabinoid hydrolysis would be metabolized into eicosanoids; and 2) these eicosanoids would mediate some of the effects of endocannabinoids. To confirm these hypotheses, experiments were performed in which freshly isolated human neutrophils were treated with endocannabinoids. Unlike AEA, 2-AG stimulated myeloperoxidase release, kinase activation, and calcium mobilization by neutrophils. Although 2-AG did not induce the migration of neutrophils, it induced the release of a migrating activity for neutrophils. 2-AG also rapidly (1 min) induced a robust biosynthesis of leukotrienes, similar to that observed with AA. The effects of 2-AG were not mimicked nor prevented by cannabinoid receptor agonists or antagonists, respectively. Finally, the blockade of either 2-AG hydrolysis, leukotriene (LT) B(4) biosynthesis, or LTB(4) receptor 1 activation prevented all the effects of 2-AG on neutrophil functions. In conclusion, we demonstrated that 2-AG potently activates human neutrophils. This is the consequence of 2-AG hydrolysis, de novo LTB(4) biosynthesis, and an autocrine activation loop involving LTB(4) receptor 1.  相似文献   

14.
摘要 目的:基于液相色谱-串联质谱技术(LC-MS/MS)对癫痫小鼠毛发中内源性大麻素(2-AG、AEA)进行含量检测。方法:匹鲁卡品腹腔注射方法建立小鼠癫痫模型,采用LC-MS/MS检测毛发中2-AG、AEA的含量,对比分析不同癫痫发作分级小鼠2-AG、AEA含量差异。结果:标准品溶液中AEA、2-AG的保留时间分别为14.3 min,18.1 min,毛发样品中AEA、2-AG的保留时间分别为14.0 min,17.7 min。毛发样品中AEA的检测限、定量限、回收率为0.7 pg/mg、2.1 pg/mg和97.9%,毛发样品中2-AG的检测限、定量限、回收率为3.2 pg/mg、10.9 pg/mg和99.3%,且二者的日内、日间变异系数均低于15%。癫痫发作1级、2级、3级、4级、5级这五个分级癫痫小鼠的AEA含量和2-AG含量依次升高,不同癫痫发作分级小鼠毛发样品中AEA含量和2-AG含量比较(P均<0.05)。结论:LC-MS/MS测定癫痫小鼠毛发中2-AG、AEA的表达量,具有灵敏度更高,样品使用量更少等优点,可大规模样本研究。  相似文献   

15.
Muscle disuse has numerous physiological consequences that end up with significant catabolic metabolism and ultimately tissue atrophy. What is not known is how muscle atrophy affects the endocannabinoid (EC) system. Arachidonic acid (AA) is the substrate for anandamide (AEA) and 2-arachidonylgycerol (2-AG), which act as agonists for cannabinoid receptors CB1 and CB2 found in muscle. Diets with n-3 polyunsaturated fatty acids (PUFA) have been shown to reduce tissue levels of AA, AEA and 2-AG. Therefore, we hypothesized that hind limb suspension (HS)-induced muscle atrophy and intake of n-3 PUFA will change mRNA levels of the EC system. Mice were randomized and assigned to a moderate n-3 PUFA [11.7 g/kg eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA)], high n-3 PUFA (17.6 g/kg EPA+DHA) or control diets for 12 days and then subjected to HS or continued weight bearing (WB) for 14 days. HS resulted in body weight, epididymal fat pad and quadriceps muscle loss compared to WB. Compared to WB, HS had greater mRNA levels of AEA and 2-AG synthesis enzymes and CB2 in the atrophied quadriceps muscle. The high n-3 PUFA diet resulted in greater mRNA levels of EC synthesis enzymes, and CB1 and CB2. The higher mRNA levels for EC with HS and dietary n-3 PUFA suggest that muscle disuse and diet induce changes in the EC system to sensitize muscle in response to metabolic and physiological consequences of atrophy.  相似文献   

16.
Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.  相似文献   

17.
The endocannabinoid system (ECS) plays an important role in pain processing and modulation. Since the specific effects of endocannabinoids within the orofacial area are largely unknown, we aimed to determine whether an increase in the endocannabinoid concentration in the cerebrospinal fluid (CSF) caused by the peripheral administration of the FAAH inhibitor URB597 and tooth pulp stimulation would affect the transmission of impulses between the sensory and motor centers localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were evaluated on rats using a method that allowed the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation and URB597 treatment. The amplitude of ETJ was a measure of the effect of endocannabinoids on the neural structures. The concentrations of the endocannabinoids tested (AEA and 2-AG) were determined in the CSF, along with the expression of the cannabinoid receptors (CB1 and CB2) in the tissues of the mesencephalon, thalamus, and hypothalamus. We demonstrated that anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), was significantly increased in the CSF after treatment with a FAAH inhibitor, while tooth pulp stimulation had no effect on the AEA and 2-AG concentrations in the CSF. We also found positive correlations between the CSF AEA concentration and cannabinoid receptor type 1 (CB1R) expression in the brain, and between 2-AG and cannabinoid receptor type 2 (CB2R), and negative correlations between the CSF concentration of AEA and brain CB2R expression, and between 2-AG and CB1R. Our study shows that endogenous AEA, which diffuses through the cerebroventricular ependyma into CSF and exerts a modulatory effect mediated by CB1Rs, alters the properties of neurons in the trigeminal sensory nuclei, interneurons, and motoneurons of the hypoglossal nerve. In addition, our findings may be consistent with the emerging concept that AEA and 2-AG have different regulatory mechanisms because they are involved differently in orofacial pain. We also suggest that FAAH inhibition may offer a therapeutic approach to the treatment of orofacial pain.  相似文献   

18.
The neutral arachidonic acid derivatives N-arachidonylethanolamide (anandamide or AEA) and 2-arachidonylglycerol (2-AG) have been identified as endogenous ligands for the cannabinoid receptors. Quantitation of these endocannabinoids from various tissues has been shown to be essential in the elucidation of cannabinoid-mediated processes in vivo. Here, we describe a novel method for the detection and quantitation of AEA and 2-AG from mammalian tissue. We exploit the ability of silver cation to bind to the polyunsaturated arachidonate backbone of both molecules to form the charged species [M+Ag](+). These complexes are amenable to liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, resulting in the simple and specific quantitation of AEA and 2-AG. The limits of detection of 2-AG and AEA are 13 and 14fmol, respectively, on-column. This method provides an alternative to existing methods, which employ derivation and/or selected ion monitoring (when mass spectrometric detection is used), and may facilitate the understanding of the physiological roles of this new class of compounds.  相似文献   

19.
Cyclooxygenase (COX) possesses substrate affinity for the endocannabinoids (EC) anandamide (AEA) and 2-arachidonylglycerol (2-AG). We hypothesized that selective antagonism/activation of the cannabinoid receptors will increase COX activity and the availability of EC as substrates will lead to higher COX activity. Since the relationship between EC signaling of the endocannabinoid system (ECS) and the COX pathway in muscle has not been investigated, we examined agonist, antagonists and polyunsaturated fatty acid effects on ECS genes in myoblasts. At 50% confluency, C2C12 myoblasts were pretreated with 5 μM of the cannabinoid receptor (CB)2 inverse agonist AM630 for 2 h and one with both AM630 and 1 μM of the CB1 antagonist NESS0327. Cell cultures pretreated with AM630 were then administered with 25 μM of either arachidonic acid (20:4n6), eicosapentaenoate (EPA) (20:5n3), docosahexaenoate (DHA) (22:6n3), AEA or bovine serum albumin (vehicle control) for 24 h. Quantitative polymerase chain reaction analyses were performed looking at ECS and prostaglandin genes. Total COX activity and COX-1 protein were greater in the AM630+AEA-treated cells compared to all other cell cultures. The mRNA for the AEA synthesis enzyme N-acyl phosphatidylethanolamine phospholipase D and the 2-AG synthesis enzymes diacylglycerol lipase (DAGL)α and DAGLβ were higher in AM630+EPA-treated cells compared to the other groups. The mRNA levels of CB1 and CB2 were both highest in the AM630+EPA group. The mRNA for interleukin-6 and tumor necrosis factor-α was higher with AEA but lower with DHA and docosahexaenoyl ethanolamide (DHEA), supporting previous findings that the EC AEA supports activation of the COX system. These findings suggest that COX activity and protein levels are influenced by the ECS, specifically by the ligand AEA for CB1 and by inverse agonism of CB2.  相似文献   

20.
Exogenous application of neural progenitor cells (NPCs) has successful implications in treating brain disorders, and research is beginning to identify ways to mimic this exogenous application by activating endogenous stem cell compartments. The recent discovery of a functional endocannabinoid system in murine NPCs (mNPCs) represents one potential therapeutic means to influence endogenous stem cell compartments. High levels of the endogenous cannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) persist during CNS inflammation and infection. The goal of this study was to assess the influence of AEA on mNPCs to identify how the endocannabinoid system influences mNPCs in vitro, a potential model to investigate effects of endocannabinoids on endogenous stem cell compartments. Our results show that AEA affects mNPC cell fate determination. Initial glial differentiation was observed, followed by induction of neuronal differentiation with AEA treatment. Cell survival and apoptosis was not affected by AEA. These effects were coupled by an increased phosphorylation of cAMP-responsive element (CRE) binding protein (CREB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号