首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We investigated the mode of action of ES-1273, a novel DNA gyrase inhibitor obtained by optimization of ES-0615, which was found by screening our chemical library using anucleate cell blue assay. ES-1273 exhibited the same antibacterial activity against S. aureus strains with amino acid change(s) conferring quinolone- and coumarin-resistance as that against a susceptible strain. In addition, ES-1273 inhibited DNA gyrase supercoiling activity, but not ATPase activity of the GyrB subunit of DNA gyrase. Moreover, ES-1273 did not induce cleavable complex. These findings demonstrate that the mechanism by which ES-1273 inhibits DNA gyrase is different from that of the quinolones or the coumarins. Preincubation of DNA gyrase and substrate DNA prevented inhibition of DNA gyrase supercoiling activity by ES-1273. ES-1273 antagonized quinolone-induced cleavage. In electrophoretic mobility shift assay, no band representing DNA gyrase-DNA complex was observed in the presence of ES-1273. Taken together, these results indicate that ES-1273 prevents DNA from binding to DNA gyrase. Furthermore, our results from surface plasmon resonance experiments strongly suggest that ES-1273 interacts with DNA. Therefore, the interaction between ES-1273 and DNA prevents DNA from binding to DNA gyrase, resulting in inhibition of DNA gyrase supercoiling. Interestingly, we also found that ES-1273 inhibits topoisomerase IV and human topoisomerase IIalpha, but not human topoisomerase I. These findings indicate that ES-1273 is a type II topoisomerase specific inhibitor.  相似文献   

2.
The coumarin antibiotics are potent inhibitors of DNA replication whose target is the enzyme DNA gyrase, an ATP-dependent bacterial type II topoisomerase. The coumarin drugs inhibit gyrase action by competitive binding to the ATP-binding site of DNA gyrase B protein. The production of new biologically active products has stimulated additional studies on coumarin-gyrase interactions. In this regard, a 4.2 kDa peptide mimic of DNA gyrase B protein from Escherichia coli has been designed and synthesized. The peptide sequence includes the natural fragment 131-146 (coumarin resistance-determining region) and a segment containing the gyrase-DNA interaction region (positions 753-770). The peptide mimic binds to novobiocin (Ka = 1.4+/-0.3 x 10(5) M(-1)), plasmid (Ka = 1.6+/-0.5 x 10(6) M(-1)) and ATP (Ka = 1.9+/-50.4 x 10(3) M(-1)), results previously found with the intact B protein. On the other hand, the binding to novobiocin was reduced when a mutation of Arg-136 to Leu-136 was introduced, a change previously found in the DNA gyrase B protein from several coumarin-resistant clinical isolates of Escherichia coli In contrast, the binding to plasmid and to ATP was not altered. These results suggest that synthetic peptides designed in a similar way to that described here could be used as mimics of DNA gyrase in studies which seek a better understanding of the ATP, as well as coumarin, binding to the gyrase and also the mechanism of action of this class of antibacterial drugs.  相似文献   

3.
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.  相似文献   

4.
Glutamate racemase (MurI) catalyzes the interconversion of l-glutamate to d-glutamate, one of the essential amino acids present in the peptidoglycan. In addition to this essential enzymatic function, MurI from Escherichia coli, Bacillus subtilis and Mycobacterium tuberculosis inhibit DNA gyrase activity. A single gene for murI found in the Mycobacterium smegmatis genome was cloned and overexpressed in a homologous expression system to obtain a highly soluble enzyme. In addition to the racemization activity, M. smegmatis MurI inhibits DNA gyrase activity by preventing DNA binding of gyrase. The sequestration of the gyrase by MurI results in inhibition of all reactions catalyzed by DNA gyrase. More importantly, MurI overexpression in vivo in mycobacterial cells provides protection against the action of ciprofloxacin. The DNA gyrase-inhibitory property thus appears to be a typical characteristic of MurI and would have probably evolved to either modulate the function of the essential housekeeping enzyme or to provide protection to gyrase against gyrase inhibitors, which cause double-strand breaks in the genome.  相似文献   

5.
DNA gyrase is the target of coumarin and cyclothialidine antibacterials, which bind to the B subunit of the enzyme (GyrB). Currently available GyrB inhibitors have not been clinically successful, but their high in vitro potency against DNA gyrase has raised interest in the development of novel noncoumarin antibacterials acting at the same site. We report the development of a simple scintillation proximity assay (SPA) for the study of binding interactions between coumarin or noncoumarin antibacterials and GyrB, which prevents the needs of separation steps and can be run in microtiter plate formats. The assay is based on the detection of the binding of a radioligand, [3H]dihydronovobiocin, to a biotin-labeled 43-kDa fragment of GyrB (biotin-GyrB43), which is captured by streptavidin-coated SPA beads. The typical assay was conducted in 96-well microtiter plates, with final concentration of 10 nM for biotin-GyrB43, 20 nM for [3H]dihydronovobiocin, and 33 microg of SPA beads/well. From saturation experiments, an equilibrium dissociation constant (K(d)) for dihydronovobiocin of 8.10 nM was found. Displacement studies gave 50% inhibitory concentrations (IC(50)) of 42, 64, and 11 nM for novobiocin, dihydronovobiocin, and the cyclothialidine analogue GR122222X, respectively, consistent with previous findings. The assay was found to be robust to dimethyl sulfoxide up to 5% (v/v) and can be used for high-throughput screens of large chemical collections in the search of novel DNA gyrase inhibitors.  相似文献   

6.
The relationship between the loss of culturability of Escherichia coli cells in seawater and the DNA supercoiling level of a reporter plasmid (pUC8) have been studied under different experimental conditions. Transfer to seawater of cells grown at low osmolarity decreased their ability to grow without apparent modification of the plasmid supercoiling. We found that E. coli cells could be protected against seawater-induced loss of culturability by increasing their DNA-negative supercoiling in response to environmental factors: either a growth at high osmolarity before the transfer to seawater, or addition of organic matter (50-mg/l peptone) in seawater. We further found conditions where a DNA-induced relaxation was accompanied by an increase in seawater sensitivity. Indeed, inactivation of either one of the subunits A and B of DNA gyrase, which leads to important DNA relaxation, was accompanied in both cases by an increased loss of culturability of conditional mutants after transfer to seawater which could not be explained uniquely by the increase in the temperature required to inactivate the gyrase. Similarly, a strain harbouring a mutation in topoisomerase I, compensated by another mutation in subunit B of the gyrase, was more sensitive to seawater than the isogenic wild-type cell and this greater sensitivity was correlated to a relaxation of plasmid DNA. Again, in these different cases, a previous growth at high osmolarity protected against this seawater sensitivity. We thus propose that the ability of E. coli cells to survive in seawater and maintain their ability to grow on culture media could be linked, at least in part, to the topological state of their DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have labeled the adenosine triphosphate binding site of Escherichia coli DNA gyrase with the ATP affinity analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP strongly inhibits the ATP-ase and DNA supercoiling activities of DNA gyrase, with 50% inhibition occurring at 7.5 microM inhibitor. ATP and ADP compete with PLP-AMP for binding and protect the enzyme against inhibition. The labeling appears to proceed by a Schiff base complex between the 4-formyl group of the pyridoxyl moiety of PLP-AMP and a protein primary amino group, since the inhibition and reagent labeling are reversible unless the complex is treated with NaBH4. Complete inactivation is estimated to occur upon the covalent incorporation of 2 mol of inhibitor/mol of gyrase. The Km for ATP was found to be unchanged for partially inhibited enzyme samples, suggesting an all-or-none type of inhibition. A 3H-labeled peptide spanning residues 93-131 of the B protein was isolated from a V-8 protease digest. Radioactive peaks corresponding to Lys-103 and Lys-110 were found during the Edman degradation, suggesting that these amino acids form part of the ATP binding site. A comparison of the amino acid sequence in this region with the sequences of other type II topoisomerases indicates the possible location of a common ATP binding domain.  相似文献   

8.
Clinical isolates of highly fluoroquinolone-resistant Pseudomonas aeruginosa had a mutation in either A or B subunit of DNA gyrase and over-expressed MexB and MexX, the efflux system proteins. Introduction of wild-type gyrase genes of Escherichia coli into the isolates made them as fluoroquinolonesusceptible as the moderately fluoroquinolone-resistant strains that only over-expressed efflux system proteins. These findings demonstrate that high fluoroquinolone-resistance in P. aeruginosa is attributed to cooperation between alteration in DNA gyrase genes and over-expression of efflux systems proteins.  相似文献   

9.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

10.
Bacterial DNA gyrase is composed of two subunits, gyrase A and B, and is responsible for negatively supercoiling DNA in an ATP-dependent manner. The coumarin antibiotics novobiocin and coumermycin are known inhibitors of bacterial DNA gyrase in vivo and in vitro. We have cloned, mapped, and partially sequenced Rhodobacter capsulatus gyrB which encodes the gyrase B subunit that is presumably involved in binding to coumarins. DNA gyrase activities from crude extracts of R. capsulatus were detected and it was shown that the R. capsulatus activity is (1) inhibited by novobiocin and coumermycin, (2) ATP-dependent and, (3) present in highly aerated and anaerobically grown cells. We previously observed that when R. capsulatus coumermycin-resistant strains are continuously recultured on media containing coumermycin they sometimes acquired mutations in hel genes (i.e., cytochromes c biogenesis mutations). We discuss the possibility that coumarins may inhibit cytochromes c biogenesis as a second target in R. capsulatus via hel (i.e., a putative ATP-dependent heme exporter).  相似文献   

11.
In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown ceils, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.  相似文献   

12.
Development of novel DNA gyrase B inhibitors is an important field of antibacterial drug discovery whose aim is to introduce a more effective representative of this mechanistic class into the clinic. In the present study, two new series of Escherichia coli DNA gyrase inhibitors bearing the 4,5-dibromopyrrolamide moiety have been designed and synthesized. 4,5,6,7-Tetrahydrobenzo[1,2-d]thiazole-2,6-diamine derivatives inhibited E. coli DNA gyrase in the submicromolar to low micromolar range (IC50 values between 0.891 and 10.4 μM). Their “ring-opened” analogues, based on the 2-(2-aminothiazol-4-yl)acetic acid scaffold, displayed weaker DNA gyrase inhibition with IC50 values between 15.9 and 169 μM. Molecular docking experiments were conducted to study the binding modes of inhibitors.  相似文献   

13.
Structural studies of topoisomerase-fluoroquinolone-DNA ternary complexes revealed a cavity between the quinolone N-1 position and the active site tyrosine. Fluoroquinolone derivatives having positively charged or aromatic moieties extended from the N-1 position were designed to probe for binding contacts with the phosphotyrosine residue in ternary complex. While alkylamine, alkylphthalimide, and alkylphenyl groups introduced at the N-1 position afforded derivatives that maintained modest inhibition of the supercoiling activity of DNA gyrase, none retained ability to poison DNA gyrase. Thus, the addition of a large and/or long moiety at the N-1 position disrupts ternary complex formation, and retained ability to inhibit supercoiling is likely through interference with the strand breakage reaction. Two derivatives were found to possess inhibitory effects on the decatenation activity of human topoisomerase II.  相似文献   

14.
The interaction between coumarin drugs and DNA gyrase   总被引:15,自引:3,他引:12  
The coumarin group of antibiotics have as their target the bacterial enzyme DNA gyrase. The drugs bind to the B subunit of gyrase and inhibit DNA supercoiling by blocking the ATPase activity. Recent data show that the binding site for the drugs lies within the N-terminal part of the B protein, and individual amino acids involved in coumarin interaction are being identified. The mode of inhibition of the gyrase ATPase reaction by coumarins is unlikely to be simple competitive inhibition, and the drugs may act by stabilizing a conformation of the enzyme with low affinity for ATP.  相似文献   

15.
A number of lines of evidence suggest that the N-terminal sub-domain of the DNA gyrase B protein contains the binding site for the coumarin antibiotics. We have engineered a clone which encodes a 24 kDa protein which represents this domain. Bacteria which overproduce this protein show an elevated level of resistance to coumarins, suggestive of binding of the 24 kDa protein to the drugs In vivo. In vitro we find that the 24 kDa protein does not interact with the gyrase A or B proteins or with DNA, and fails to hydrolyse ATP or show significant binding to ATP, ADP or ADPNP. However, we show that the 24 kDa protein binds coumarin drugs as tightly as the Intact B protein. A number of experiments suggest that the Interaction of the coumarins with the protein is predominantly hydrophobic in nature.  相似文献   

16.
The effects of mono- and divalent metal ions on the DNA gyrase B subunit, on its 43 kDa and 47 kDa domains, and on two mutants in the Toprim domain (D498A and D500C) were investigated by means of circular dichroism and protein melting experiments. Both types of metal ion, with the notable exception of Mn2+, did not affect the conformational properties of the enzyme subunit at room temperature, but were able to produce selective and differential effects on protein stability. In particular, monovalent (K+) ions increased the stability of the gyrase B structure, whereas destabilising effects were most prominent using Mn2+ as the metal ion. Ca2+ and Mg2+ produced comparable changes in the gyrase B melting profile. Additionally, we found that monovalent (K+) ions were more effective in the 43 kDa N-terminal domain where ATP binding occurs, whereas divalent ions caused large modifications in the conformational stability of the 47 kDa C-terminal domain. Our results on gyrase B mutants indicate that D498 interacts with Mn2+, whereas it has little effect on the binding of the other ions tested. A D500C mutation, in contrast, effectively impairs Mg2+ affinity, suggesting effective contacts between this ion and D500 in the wild-type enzyme. Hence, the sites of metal ion complexation within the Toprim domain are modulated by the nature of the ion species. These results suggest a double role played by metal ions in the catalytic steps involving DNA gyrase B. One has to do with direct involvement of cations complexed to the Toprim domain in the DNA cutting-rejoining process, the other, until now overlooked, is connected to the dramatic changes in protein flexibility produced by ion binding, which reduces the energy required for the huge conformational changes essential for the catalytic cycle to occur.  相似文献   

17.
18.
DNA binding and antigenic specifications of DNA gyrase.   总被引:10,自引:1,他引:9       下载免费PDF全文
H Lother  R Lurz    E Orr 《Nucleic acids research》1984,12(2):901-914
Complexes of DNA gyrase and minichromosomal DNA containing the origin of replication of Escherichia coli (oriC) can be formed without metabolic energy and visualised by electron microscopy. The A subunit, part of the A2B2-DNA gyrase complex is the binding protein. Various binding sites are scattered around the minichromosomal DNA including oriC. The minimal origin contains the only prominent and reproducible binding site. Binding to this site is suppressed by oxolinic acid and the ATP analogue beta-y-imido ATP. If gyrase isolated from the gram-positive bacterium Bacillus subtilis is used no binding to oriC is seen. This observation is consistent with antigenic differences between the A subunits of the two microorganisms. The binding to oriC might reflect a requirement for DNA gyrase during the initiation of DNA replication.  相似文献   

19.
We have examined the kinetics of interaction between Escherichia coli DNA gyrase and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (ADPNP) in the presence and absence of ATP. In the absence of ATP, [alpha-32P]ADPNP binds extremely slowly to gyrase, with an apparent second-order rate constant (k1) of 120 M-1 min-1. Similarly, the limited negative supercoiling of closed-circular DNA caused by ADPNP binding is slow, requiring at least 2 h to reach completion in the presence of 100 microM ADPNP. A very slow but detectable rate of dissociation of ADPNP from gyrase was measured, with a rate constant of 3.5 x 10(-4) min-1. The calculated dissociation constant for ADPNP is thus 2.9 microM. ADPNP is a potent competitive inhibitor of ATP-dependent DNA supercoiling. Inhibition is established much more rapidly than can be accounted for by the slow rate of ADPNP binding in the absence of ATP. We have found that ATP can accelerate the rate of [32P]ADPNP binding by more than 15-fold (k1 = 1,850 M-1 min-1). The ATP-promoted rate enhancement requires the presence of DNA; in the absence of DNA, ATP has no effect on the rate of binding. Relaxed closed-circular, nicked-circular, and linear pBR322 DNA are all equally effective cofactors for ATP-stimulated binding of ADPNP. After a short lag, the presence of ATP also greatly speeds up ADPNP dissociation from gyrase bound initially to closed-circular DNA, with the restoration of DNA supercoiling activity. This effect is not observed in the presence of nicked-circular or linear DNA, suggesting that ADPNP dissociates more rapidly from gyrase bound to supercoiled DNA. The results of ADPNP binding provide evidence for cooperative interactions between the nucleotide binding sites. To account for these data, a model is proposed for the interaction of nucleotides at the two ATP binding sites on DNA gyrase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号