首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Rapid and direct screening of nitrile-converting enzymes is of great importance in the development of industrial biocatalytic process for pharmaceuticals and fine chemicals. In this paper, a combination of ferrous and ferric ions was used to establish a novel colorimetric screening method for nitrile hydratase and amidase with α-amino nitriles and α-amino amides as substrates, respectively. Ferrous and ferric ions reacted sequentially with the cyanide dissociated spontaneously from α-amino nitrile solution, forming a characteristic deep blue precipitate. They were also sensitive to weak basicity due to the presence of amino amide, resulting in a yellow precipitate. When amino amide was further hydrolyzed to amino acid, it gave a light yellow solution. Mechanisms of color changes were further proposed. Using this method, two isolates with nitrile hydratase activity towards 2-amino-2,3-dimethyl butyronitrile, one strain capable of hydrating 2-amino-4-(hydroxymethyl phosphiny) butyronitrile and another microbe exhibiting amidase activity against 2-amino-4-methylsulfanyl butyrlamide were obtained from soil samples and culture collections of our laboratory. Versatility of this method enabled it the first direct and inexpensive high-throughput screening system for both nitrile hydratase and amidase.  相似文献   

2.
A new high-throughput screening method using fluorescein sodium salt as an indicator to obtain hydrolases with high enantioselectivity is developed, which is demonstrated to be sensitive and reliable. The results determined by the method correlate well with those from GC analysis. This method can be applied to determine activity and enantioselectivity of not only lipase and esterase, but also other enzymes which catalyze hydrolysis reaction releasing proton, such as the protease or amidase. Because of the application of small amount of optically pure enantiomers, screening large libraries of enzymes is allowed at low cost and in short time.  相似文献   

3.
A novel fluorescent assay to continuously monitor fatty acid amide hydrolase (FAAH) activity that is simple, sensitive, and amenable to high-throughput screening (HTS) of compound libraries is described in this article. Stable Chinese hamster ovary (CHO) cell lines expressing either human FAAH or an inactive mutant, FAAH-S241A, were established. Arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a novel fluorogenic substrate for FAAH, was designed and synthesized. FAAH catalyzes the hydrolysis of AAMCA to generate arachidonic acid and a highly fluorescent 7-amino, 4-methyl coumarin (AMC). The assay was done at 25 degrees C by incubating whole cell or microsomal preparations from FAAH-expressing cells with AAMCA. Release of AMC was monitored continuously using a fluorometer. Microsomal FAAH catalyzed the hydrolysis of AAMCA with an apparent K(m) of 0.48muM and V(max) of 58pmolmin(-1)mgprotein(-1). The assay is specific for FAAH given that microsomes prepared from cells expressing FAAH-S241A or vector alone had no significant activity against AAMCA. Furthermore, the activity was inhibited by URB-597, an FAAH-specific inhibitor, in a concentration-dependent manner with an IC(50) of 33.5nM. The assay was optimized for HTS and had a Z' value ranging from 0.7 to 0.9. The assay is also compatible with ex vivo analysis of FAAH activity.  相似文献   

4.
In high-throughput screening of gene and mutant libraries, high analysis speeds and short method development times are important factors. Mass spectrometry (MS) is considered to be a generic analytical technique with a relatively short development time. Furthermore, when applying flow injection analysis (FIA) for sample introduction, the requirements for high throughput are met. In this work, the use of a single quadrupole electrospray MS instrument for assaying amidase activity in a gene library is demonstrated. The desired selectivity for measuring the amino acid, the reaction product of the amidase reaction, in the presence of high concentrations of the corresponding amino acid amide substrate was obtained by selective ionization of the amino acid in negative ion mode electrospray. The only sample preparation required was a 200-fold dilution of the reaction mixture. For obtaining quantitative results, a complementary calibration procedure was set up to correct for the change in ionization suppression as a function of conversion. This approach was used to screen a Mycobacterium neoaurum gene library consisting of 11,520 clones with α-methylleucine amide as substrate within 24 h. Conversion was measured on the [M−H] species of the corresponding α-methylleucine (m/z 144). Five positive clones were detected with a conversion ranging from 0.2% to 3.4%.  相似文献   

5.
建立了一种快速筛选选择性水解手性芳香酰胺类化合物微生物的方法。在中性或弱碱性条件下,KMnO4能氧化芳香胺,但对芳香乙酰胺没有氧化效果。KMnO4被芳香胺还原而褪色,通过褪色程度来快速测定菌的酶活力及手性选择性。以1-苯基乙酰胺为例,得出最佳筛选体系:最大吸收波长为525 nm;1-苯基乙胺在0.04~5 mmol/L的浓度范围内与其ΔA525符合朗伯比尔定律;反应温度为60℃,反应时间为20 m in。通过该模型筛到5株选择性的菌株,R-选择性的菌株4株,S-选择性的菌株1株。  相似文献   

6.
An amidase (EC 3.5.1.4) in branch 2 of the nitrilase superfamily, from the thermophilic strain Geobacillus pallidus RAPc8, was produced at high expression levels (20 U/mg) in small-scale fermentations of Escherichia coli. The enzyme was purified to 90% homogeneity with specific activity of 1,800 U/mg in just two steps, namely, heat-treatment and gel permeation chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and electron microscopic (EM) analysis of the homogenous enzyme showed the native enzyme to be a homohexamer of 38 kDa subunits. Analysis of the biochemical properties of the amidase showed that the optimal temperature and pH for activity were 50 and 7.0°C, respectively. The amidase exhibited high thermal stability at 50 and 60°C, with half-lives greater than 5 h at both temperatures. At 70 and 80°C, the half-life values were 43 and 10 min, respectively. The amidase catalyzed the hydrolysis of low molecular weight aliphatic amides, with d-selectivity towards lactamide. Inhibition studies showed activation/inhibition data consistent with the presence of a catalytically active thiol group. Acyl transfer reactions were demonstrated with acetamide, propionamide, isobutyramide, and acrylamide as substrates and hydroxylamine as the acyl acceptor; the highest reaction rate being with isobutyramide. Immobilization by entrapment in polyacrylamide gels, covalent binding on Eupergit C beads at 4°C and on Amberlite-XAD57 resulted in low protein binding and low activity, but immobilization on Eupergit C beads at 25°C with cross-linking resulted in high protein binding yield and high immobilized specific activity (80% of non-immobilized activity). Characterization of Eupergit C-immobilized preparations showed that the optimum reaction temperature was unchanged, the pH range was somewhat broadened, and stability was enhanced giving half-lives of 52 min at 70°C and 30 min at 80°C. The amidase has potential for application under high temperature conditions as a biocatalyst for d-selective amide hydrolysis producing enantiomerically pure carboxylic acids and for production of novel amides by acyl transfer.  相似文献   

7.
A simple assay for monoacylglycerol hydrolysis suitable for high-throughput screening is described. The assay uses [(3)H]2-oleoylglycerol as substrate, with the tritium label in the glycerol part of the molecule and the use of phenyl sepharose gel to separate the hydrolyzed product ([(3)H]glycerol) from substrate. Using cytosolic fractions derived from rat cerebella as a source of hydrolytic activity, the assay gives the appropriate pH profile and sensitivity to inhibition with compounds known to inhibit hydrolysis of this substrate. The assay could also be adapted to a 96-well plate format, using C6 cells as the source of hydrolytic activity. Thus the assay is simple and appropriate for high-throughput screening of inhibitors of monoacylglycerol hydrolysis.  相似文献   

8.
We have devised a simple high-throughput screening compatible fluorescence polarization-based assay that can be used to detect the elongation activity of nucleic acid polymerase enzymes. The assay uses a 5' end-labeled template strand and relies on an increase in the polarization signal from the fluorescent label as it is drawn in toward the active site by the action of the enzyme. If the oligonucleotide is sufficiently short, the fluorescence polarization signal can also be used to detect binding prior to elongation activity. We refer to the nucleic acid substrate as a polymerase elongation template element (PETE) and demonstrate the utility of this PETE assay in a microtiter plate format using the RNA-dependent RNA polymerase from poliovirus to extend a self-priming hairpin RNA. The PETE assay provides an efficient method for screening compounds that may inhibit the nucleic acid binding or elongation activities of polymerases.  相似文献   

9.
2-Chloronicotinic acid (2-CA) is an important building block for a series of agrochemicals and pharmaceuticals. Amidase-catalyzed hydrolysis of 2-chloronicotinamide is one of the most attractive approaches for 2-CA production. However, development of the bioprocess was plagued by low activity of amidase for 2-chloronicotinamide. In this work, an amidase signature (AS) family amidase from Pantoea sp. (Pa-Ami), with superior activity for nicotinamide and its chlorinated derivatives, was exploited and characterized. Kinetic analysis and molecular docking clearly indicated that chlorine substitution in the pyridine ring of nicotinamide, especially the substitution at 2-position led to a dramatic decrease of Pa-Ami activity. The productivity of the bioprocess was significantly improved using fed-batch mode at low reaction temperature and 2-CA was produced as high as 370 mM with a substrate conversion of 94.2%. These results imply that Pa-Ami is potentially promising biocatalyst for industrial production of 2-CA.  相似文献   

10.
Exocellulases play a key role in cleaving the accessible ends of cellulose molecules to release soluble glucose and cellobiose. To date, there have been no screens for exocellulase owing to assay protocol limitations, the high cost of substrates, and low activity of exocellulases compared with endocellulases. This study is the first to demonstrate direct screening for exocellulase activity using a robotic, high-throughput screening (HTS) system. Cell growth in 96-well plates was measured by monitoring optical density over 11–14 h at 37 °C with agitation. Fluorescence of methylumbelliferyl groups released from 4-methylumbelliferyl-β-D-cellobioside was determined using a VICTOR3 microplate reader. This new HTS system enabled activity verification of more than 104 clones per day. As a result, we obtained four exocellulases clones (CelEx-SF301, CelEx-SF309, CelEx-BR12 and CelEx-BR15) from 29,006 metagenomic fosmid clones that had previously been prepared from sweet potato field soil microbes and rumen fluid. This powerful approach could be effectively applied to screen various metagenomic resources for new enzymes.  相似文献   

11.
We describe the development of a novel method for the assay of serine/threonine protein kinases based on fluorescence lifetime. The assay consists of three generic peptides (which have been used by others in the assay of >140 protein kinases in various assay formats) labeled with a long lifetime fluorescent dye (14 or 17 ns) that act as substrates for protein kinases and an iron(III) chelate that modulates the fluorescence lifetime of the peptide only when it is phosphorylated. The decrease in average fluorescence lifetime as measured in a recently developed fluorescence lifetime plate reader (Edinburgh Instruments) is a measure of the degree of phosphorylation of the peptide. We present data showing that the assay performs as well as, and in some cases better than, the “gold standard” radiometric kinase assays with respect to Z′ values, demonstrating its utility in high-throughput screening applications. We also show that the assay gives nearly identical results in trial screening to those obtained by radiometric assays and that it is less prone to interference than simple fluorescence intensity measurements.  相似文献   

12.
A high-throughput cell-free protein synthesis method has been described. The methodology is based on a bilayer diffusion system that enables the continuous supply of substrates, together with the continuous removal of small byproducts, through a phase between the translation mixture and substrate mixture. With the use of a multititer plate the system was functional for a prolonged time, and as a consequence yielded more than 10 times that of the similar batch-mode reaction. Combining this method with a wheat germ cell-free translation system developed by us, the system could produce a large amount of protein sufficient for carrying out functional analyses. This novel bilayer-based cell-free protein synthesis system with its simplicity, minimum time and low cost may be useful practical methodology in the post-genome era.  相似文献   

13.
14.
Epoxygenases are attractive enzymes for synthesizing important chemical synthons. Directed evolution of epoxygenase properties to production demands have been limited until recently by a lack of screening systems. The previously reported p-nitrothiophenolate (pNTP) screening system was validated through improving styrene epoxidation activity of P450 BM-3 from Bacillus megaterium. Unlike the catalytically self-sufficient P450 BM-3, most epoxygenases are multi-component systems and often significantly less active. We improved the pNTP screening system for a two-component epoxygenase, styrene monooxygenase StyAB from Pseudomonas species, by enhancing the sensitivity of the pNTP assay from 400 to 140 μM and reducing styrene evaporation from 72 to 52%. These improvements were achieved using methylated β-cyclodextrins (mβ-CD) as inclusion host for styrene. Incorporation of mβ-CD increases styrene availability over the assay period and thus enables screening for improved mutants. The pNTP screening procedure for StyAB was subsequently verified in 96-well microtiter plate screens by gas chromatography analysis of styrene conversions.  相似文献   

15.
Development of a high-throughput eukaryotic screening procedure is important to increase success in obtaining improved enzymes through directed enzyme evolution. This procedure was developed for the yeast Yarrowia lipolytica which becomes the second eukaryotic host for this purpose. The extracellular lipase Lip2 was used as expressed enzyme but this system will be easily adjusted for other enzymes. We adapted and optimized the protocol for protein expression by Y. lipolytica in 96-well microplates. Yeast transformation efficiency and expression cassette insertion were increased by constructing a strain containing a zeta docking platform for targeted integration into the genome. The coefficient of variance of the full process was reduced from 36.3% to 18.9%. The main part of the variability (11.7%) arises from the specific lipase enzyme assay whereas the coefficient of variance concerning transformation, growth and expression steps represents only 7.2%. The rate of clone with no activity was reduced from 5.8% to 0.2%. Both transformation efficiency and variability are then compatible with high-throughput screening in the yeast Y. lipolytica.  相似文献   

16.
Adenylyl cyclases catalyze the production of the second messenger cyclic AMP from ATP. Until now, there has been no fluorescent adenylyl cyclase assay known that is applicable to high-throughput screening and kinetic determinations that can directly monitor the turnover of the unmodified substrate ATP. In this study, a fluorescence-based assay is described using the Ca(II)- and calmodulin-dependent adenylyl cyclase edema factor (EF) from Bacillus anthracis and Tb(III)-norfloxacin as probe for the enzyme activity. This assay can be used to study enzyme regulators, allows real-time monitoring of adenylyl cyclase activity, and does not substitute ATP by fluorescent derivatives. These derivatives must be judged critically due to their interference on the activity of enzymes. Furthermore, the new assay makes redundant the application of radioactively labeled substrates such as [α-32P]ATP or fluorescently labeled antibodies such as anti-cyclic AMP. We determined the Michaelis-Menten constant (KM), the v0max value of ATP turnover, and the IC50 values for three inhibitors of EF by this newly developed fluorescent method.  相似文献   

17.
A small-volume chromatography system was developed for rapid resin and parameter screening and applied to the purification of a therapeutic monoclonal antibody from a key product-related impurity. Accounting for constraints in peripheral volume, gradient formation, column integrity, and fraction collection in microtiter plates, the resulting system employed 2-mL columns and was successfully integrated with plate-based methods for rapid sample analysis (e. g., use of automated liquid handlers, plate readers, and HPLC). Several cation-exchange chromatography resins were screened using automated programs and tailored gradients for the combination of a particular resin and a given antibody feedstock produced during Phase 1 development. Results from the tailored gradient runs were used to select a resin, and to arrive at efficient stepwise elution schedules for the chosen resin. By maintaining a constant residence time, final operating parameters were successfully scaled to representative bed heights and column diameters up to 2.6 cm (106 mL). This approach significantly improved throughput while reducing development time and material consumption.  相似文献   

18.
Polysialyltransferases (PSTs) assemble polysialic acid (PSA) and have been implicated in many biological processes. For example, certain bacteria such as neuroinvasive Neisseria meningitidis decorate themselves in a PSA capsule to evade the innate immune system. Identifying inhibitors of PSTs therefore represents an attractive therapeutic goal and herein we describe a high-throughput, robust, and sensitive microtiter-plate-based activity assay for PST from N. meningitidis. A trisialyl lactoside (GT3) serving as the acceptor substrate was immobilized on a 384-well plate by click chemistry. Incubation with PST and CMP-sialic acid for 30 min resulted in polysialylation. The immobilized PSA was then directly detected using a green fluorescent protein (GFP)-fused PSA-binding protein consisting of the catalytically inactive double mutant of an endosialidase (GFP-EndoNF DM). We report very good agreement between kinetic and inhibition parameters obtained with our on-plate assay versus our in-solution validation assay. In addition we prove our assay is robust and reliable with a Z′ score of 0.79. All aspects of our assay are easily scalable owing to optimization trials that allowed immobilization of acceptor substrates prepared from crude reaction mixtures and the use of cell lysates. This assay methodology enables large-scale PST inhibitor screens and can be harnessed for directed evolution screens.  相似文献   

19.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

20.
根据嗜杀酵母T158c/S14a中L-A病毒-1移码效率改变影响M1病毒的存活,导致K1毒素减少,在低pH的美蓝平板上用杯碟法通过抑菌圈的大小检测酵母K1毒素的嗜杀活性,建立了一个以酵母嗜杀系统为基础的抗病毒药物筛选模型。研究了杯碟法检测酵母毒素嗜杀活性的各种条件。对不同pH和温度下酵母的嗜杀活性进行了研究,确定了模型用于筛选的最适pH范围为4.3~4.7,最适温度范围为20~22℃。运用该模型研究了几种中药对嗜杀活性的抑制作用,发现了金银花和升麻具有一定的抗病毒作用。该模型为抗病毒药物的高通量初筛奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号