首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied linoleic acid delta 5 and dihomo-gamma-linolenic acid delta 5 desaturations, and fatty acid composition, of liver microsomes in the insulin-dependent spontaneously diabetic adult female BB rat. These desaturations were defective along the normo- and hyper-glycemic period and restored during the hypoglycemic period which followed the insulin injection to the diabetic rats. The fatty acid composition of BB rats microsomes was not consistent with the desaturase activities at the different periods of glycemia, probably because other factors than desaturation impairments were involved in the evolution of fatty acid composition.  相似文献   

2.
delta 9 desaturation of stearic (1-14C) acid has been estimated from incubation of liver microsomes of adult female spontaneously diabetic BB rat, an animal model resembling the spontaneous juvenile diabetes in humans, comparatively to adult female control Wistar rat. The animals were sacrificed, when hyperglycemic, 24 hours after the last insulin injection to the BB rats. Stearic acid delta 9 desaturase activity is drastically depressed in the BB rats when fatty acid composition of liver phospholipids and microsomal total liver lipids are changed in spite of the daily injection of insulin necessary for the BB rats survival.  相似文献   

3.
In the present study, we have investigated the liver microsomal stearic acid delta9 desaturation, and the fatty acid composition of liver microsomal total lipids in 10- and 30-day-old spontaneously hypertensive rats (SHRs), compared to the normotensive Wistar Kyoto (WKY) control rats. So as to avoid any influence related to the diet, the composition of the milk being different in SHR and WKY strains, the pups were suckled by adoptive normotensive female Wistar. After weaning, the 30-day-old rats were fed a standard commercial diet and then killed. Our results show lower liver microsomal delta9 desaturase activities in the 10- and 30-day-old SHR versus the WKY of the same age. The fatty acid composition of the SHR liver microsomal total lipids are not in agreement with the changes in the delta9 desaturase activities at the two studied ages. This phenomenon depends not only on desaturation/elongation but also on other interacting aspects of lipid metabolism including oxidation, substrate availability, acyl exchange, and eicosanoid synthesis, as well as hormonal status.  相似文献   

4.
The fatty acid composition of microsomal lipids and the activities of delta 9- and delta 6-desaturases in liver microsomes of rats fed diets supplemented with beta-carotene and two levels of 13-cis-retinoic acid were studied. Four groups of male, weanling rats were fed semipurified diets containing 0 or 100 mg beta-carotene per kg diet, and 20 or 100 mg 13-cis-retinoic acid per kg diet. After 11 weeks of feeding, the rats were killed, liver microsomes were prepared and assayed for delta 9-desaturase and delta 6-desaturase activities. The activity of delta 9-desaturase was lower in liver microsomes of rats fed beta-carotene-supplemented diet or the diet supplemented with the higher level of 13-cis-retinoic acid. Microsomal delta 6-desaturase activity was, however, higher in liver of rats fed 13-cis retinoic acid; there was no effect of beta-carotene on delta 6-desaturase activity. The fatty acid compositional data on total lipids of liver microsomes were consistent with the diet-induced changes in fatty acid desaturases. Phospholipid composition of liver microsomes was also altered as a result of feeding beta-carotene or 13-cis-retinoic acid-containing diets. The proportions of phosphatidylethanolamine were generally higher, whereas those of phosphatidylcholine were lower in the experimental groups as compared with the control.  相似文献   

5.
A low protein diet affects amounts of linoleic and arachidonic acids in hepatic microsomal phospholipids of growing rats. Are the changes related to modifications in microsomal delta 6- and delta 5- linoleic acid desaturase activities? Two groups of Wistar rats weighing 80 +/- 5 g at the beginning of the experiment were used: Control group (T) was fed on a 16% gluten + 4% casein diet for 53 days; Experimental group (E) was fed on a 4% gluten + 1% casein diet for 26 days (MP) then Control diet for 27 days (RE). After 2, 14 and 26 days of MP and 2, 15 and 27 days of RE, rats of each group were sacrificed. Protein and water contents of liver, quantitative fatty acid, composition of total lipids in liver and hepatic microsomes were determined. delta 6- and delta 5- linoleic acid desaturase activities were estimated from incubation of liver microsomes with [1-14C] C 18: 2 n-6 or [2(14)C] C 20: 3 n-6 respectively. The low protein diet stops practically ponderal growth. The fatty-acid compositions of microsomal total lipids of E rats were affected in comparison with values of T rats. These modifications persist after 27 days of RE. The C 20: 4 n-6/C 18: 2 n-6 ratio in microsomal total lipids was slightly different between T and E rats but increased strongly during refeeding. Same modifications take place in the fatty-acid composition of hepatic total lipids. After two days of MP, delta 6- and delta 5- desaturase activities were depressed, phenomenon that not persist in the course of MP. These enzyme activities increase to higher values than those of the T after two days of RE.  相似文献   

6.
The effect of chronic hyperprolactinemia on the delta6- and delta5-desaturation activity, total lipid and fatty acid composition, as well as fluorescence anisotropy, was studied in liver microsomes from anterior pituitary-grafted rats. We observed a depression in delta6-desaturation activity but no changes in the delta5-desaturation activity in the grafted animals. The microsomal fraction from the hyperprolactinemic rats contained significantly less amount of linoleic acid and a higher content of 20:4 n-6, 22:5 n-6 and 22:6 n-3 acids. Lipid rotational mobility was increased in microsomes as well as in liposomes obtained from the microsomes of transplanted animals. The fluidifying effect induced by PRL was located in the deepest zone of the membrane. The results obtained indicate that high levels of prolactin induce changes in polyunsaturated fatty acid distribution in liver microsomes, which regulates the lipid rotational mobility and hence membrane fluidity.  相似文献   

7.
Cholesterol-induced microsomal changes modulate desaturase activities   总被引:9,自引:0,他引:9  
The effect of 1% dietary cholesterol and 0.5% cholate on the rat liver microsomal composition and fatty acid desaturase activities was studied over various periods of time. The cholesterol content of liver microsomes increased as well as that of phosphatidylcholine. Cholesterol/phosphatidylcholine and phosphatidylcholine/phosphatidylethanolamine ratios were also elevated. Phosphatidylinositol decreased, but it recovered its original values at the end of the experimental period. Phosphatidylserine and sphingomyelin slightly decreased with time. Fatty acid composition changes were expressed by a saturated acid decrease and monounsaturated acid increase. Arachidonic acid content was also reduced. A similar pattern appeared in the main phospholipids: phosphatidylcholine and phosphatidylethanolamine. Delta 9-Desaturase activity was enhanced as early as 48 h after cholesterol administration, whereas delta 5- and delta 6-desaturases were depressed during the same period and this enzymatic behaviour remained after 21 days of diet administration. The microsomal membrane was rigidized, as demonstrated by the increase of the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene.  相似文献   

8.
The activity of delta-6-desaturase (D6D) in liver microsomes and fatty acid composition of microsomal lipids of rats of different ages were studied. The D6D activity was similar in suckling rats and in weaning rats. However, the enzyme showed a significantly decreased activity in oldest animals, and a linear correlation was found between the D6D activity and the animal age. The fatty acid composition data on total lipids of liver microsomes were consistent with the age-dependent changes in fatty acid desaturase activity. The major changes occurred in the linoleate and arachidonate fractions; the 20:4/18:2 ratio in liver microsomes decreased together with D6D activity during aging. The loss of D6D activity may be a key factor in aging through altering lipid membrane composition.  相似文献   

9.
Rats fed a 1% cholesterol and 0.5% cholate diet for 21 days were transferred to a sterol-free diet after variable periods of time. The effect of cholesterol removal on liver microsomal composition and fatty acid desaturases was studied. Some changes were already observed after 1 day. However, after 21 days of a sterol-free diet, the cholesterol content of liver microsomes decreased as well as that of phosphatidylcholine. So did the cholesterol/phospholipid ratio. Phosphatidylinositol, phosphatidylserine and sphingomyelin slightly increased along with time. The total fatty acid composition was altered by a decrease in monounsaturated acids and an increase in the saturated acids, palmitic and stearic acids. The arachidonic acid content rose. A similar pattern of change was found in the fatty acid composition of the main phospholipids: phosphatidylcholine and phosphatidylethanolamine. delta 9-Desaturase activity steadily decreased along with cholesterol removal, whereas delta 5- and delta 6-desaturase activities were enhanced towards the end of the removal period. The microsomal membrane became more 'fluid', according to the decrease of fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene incorporated into the membrane.  相似文献   

10.
The fatty acid elongation-desaturation ability of 5,8,11,14-eicosatetraenoic (20:4(n-6)) and 5,8,11,14,17-eicosapentaenoic (20:5(n-3)) acids was determined in both liver microsomal and light mitochondrial (rich in peroxisomes) fractions of untreated and clofibrate treated rats. The elongation and the subsequent desaturation steps were performed in the corresponding favorable media. 20:5(n-3) elongation was about 2-times more extensive than that of 20:4(n-6). Clofibrate feeding for 10 days resulted in a marked decrease in the elongation rate with the two substrates, while the delta 4 desaturation rate was increased. There were small differences in the elongation rate between the microsomal and light mitochondrial fractions, however, the relative delta 4 desaturation rate was higher in the light mitochondrial fraction than microsomes.  相似文献   

11.
The changes in linoleyl-CoA desaturase activity of rat liver microsomes were studied after a single intraperitoneal injection of 11-deoxycorticosterone or aldosterone at physiological doses. Fatty acid of plasma and different liver fractions, and physical properties of microsomal membranes were also investigated. It was found that the specific activity of delta 6 desaturase decreased 4-fold 24 hr after the injection of aldosterone or deoxycorticosterone. Pretreatment of the rats with aldosterone led to a significant decrease in the percent distribution of palmitic, arachidonic, docosapentaenoic and docosahexenoic acids, with a concomitant increase in palmitoleic, oleic and linoleic acids in plasma and liver homogenates, microsomes and cytosol fractions. A similar pattern was observed after deoxycorticosterone administration. The changes resulted in a decreased unsaturation index of all fractions studied and were well-correlated with the increase observed in fluorescence depolarization of the hydrophobic probe 1,6-diphenylhexatriene in liver microsomal membranes. The interlipid and lipid/protein ratios in microsomes remained constant after hormonal treatment. These results are consistent with the idea that the inhibition of delta 6 desaturase activity and the alterations in fatty acid composition induced by mineralocorticoids, are solely responsible for the measured decrease in liver microsomal membrane fluidity.  相似文献   

12.
The activity of microsomal fatty acid delta 9-desaturase was significantly higher in liver microsomes of vitamin A-deficient rats as compared with their controls. Feeding of vitamin A-supplemented control diet to the deficient rats restored the delta 9-desaturase activity to the control values. The activity of delta 6-desaturase was not affected by vitamin A deficiency.  相似文献   

13.
The effects of incorporation of dietary oils with different n6/n3 ratio and polyunsaturated fatty acids content into rat liver and brain microsomes has been studied. The investigation of membrane fatty acid composition of liver microsomes and that of brain microsomes gave different results. In particular, liver microsomes of rats fed fish oil showed a relatively higher content of 20:5n3 and 22:6n3, and a lower content of 20:4n6. Under these conditions, a reduced glucose-6-phosphatase activity was measured. Brain microsomal fatty acid composition was only slightly affected by dietary lipid intake. The 5'-nucleotidase activity of those particles was similar, although statistically different values were found in fish-oil-fed rats and in olive-oil-fed rats. The effects of membrane fatty acid composition on membrane-bound enzyme activity are discussed.  相似文献   

14.
The present study provides strong evidence for the involvement of rat liver microsomal cytochrome b5 in the first reduction step of fatty acid chain elongation. The rate of reoxidation of NADH-reduced microsomal cytochrome b5 was markedly stimulated (up to 3-fold) by the addition of increasing concentrations of beta-ketohexadecanoyl-CoA (1-8 microM). A quantitative analysis of product formation, the effect of cyanide, and anaerobiosis completely exclude the possibility that desaturase activity accounted for the beta-ketohexadecanoyl-CoA-induced stimulation of the cytochrome b5 reoxidation rate. Using liver microsomes from untreated rats, the beta-keto substrate was found to stimulate the rate of reoxidation of cytochrome b5 by 30%. However, when liver microsomes from fat-free diet rats were employed the stimulation was more than 3-fold, suggesting that the beta-ketoacyl-CoA reductase is inducible by a high carbohydrate, fat-free diet. This study also provides evidence for the noninvolvement of cytochrome b5 in the terminal reaction step (second reduction step of chain elongation), which is catalyzed by the trans-2-enoyl-CoA reductase. Although trans-2-hexadecenoyl-CoA significantly stimulated the NADH-reduced cytochrome b5 reoxidation rate under aerobic conditions, it did not have any stimulatory effect under anaerobic conditions. One interpretation of these results is that the trans-2-hexadecenoyl-CoA is substrate for the microsomal delta 9 desaturase system. Consistent with this conclusion was the fact that the trans-2-hexadecenoyl-CoA inhibited the liver microsomal delta 9 desaturation of stearoyl-CoA to oleoyl-CoA.  相似文献   

15.
Changes in microsomal fatty acid composition, delta 9- and delta 6-desaturase activities and cholesterol and phosphorus liver content were studied in dogs fed olive and sunflower oil diets. No changes were observed in the saturated fatty acids between dietary groups. The level of monounsaturated fatty acids was more elevated in animals fed the OO diet, because of its high relative content in this diet although the in vitro delta 9-desaturase activity was similar in microsomes from the two groups. The proportion of arachidonic acid was similar in SO and OO fed animals. This similar level occurred despite a significant increase in the level of linoleic acid in membrane lipids as a result of feeding the SO supplement. The in vitro delta 6-desaturase activity in liver microsomes showed no differences between dogs fed the two diets. Thus, the higher desaturation presented in vivo by microsomes from OO group may be related to the inhibition by linoleic acid of delta 6-desaturase in dogs fed the SO diet. The polyunsaturated fatty acids (PUFA) from the n-3 series were higher in microsomal phosphatidylcholine and phosphatidylethanolamine from animals fed the OO supplemented diet. The cholesterol/phosphorus molar ratio was higher in the SO group in which the unsaturation index was only slightly affected in phospholipids.  相似文献   

16.
Sodium loading increases arachidonic acid (AA) metabolism by way of the prostaglandins(PGs) from series 2. Its effect on AA biosynthesis remains unknown. The purpose of the present study was to investigate the influence of sodium loading on the fatty acid composition of liver and liver microsomes, and the liver microsomal delta-6 and delta-5 desaturations of linoleic acid (LA) into AA. We found a decrease of LA and dihomo-gamma-linolenic acid (DGLA) levels in liver total lipids of Wistar rats receiving hypernatriuretic drinking water (NaCl 3%) for 60 days. At the same time AA increased. DGLA decreased and AA increased in liver microsomal total lipids. 1(14) C-LA delta-6 desaturase and 2(14) C-DGLA delta-5 desaturase activities increased in liver microsomes. These results show that, in addition to its influence on the regulation of glomerular filtration, sodium loading is involved in the regulation of liver AA biosynthesis.  相似文献   

17.
We have recently demonstrated that in rats the process of delta 6-desaturation of linoleic and alpha-linolenic acids slows with aging. One method of counteracting the effect of slowed desaturation of linoleic acid would be to provide the 6-desaturated metabolite, gamma-linolenic acid (18:3(n-6) GLA) directly. We have here investigated the 6-desaturation of both linoleic and alpha-linolenic acids in liver microsomes of young and old rats given GLA in the form of evening primrose oil (EPO) (B diet) in comparison to animals given soy bean oil alone (A diet), monitoring also the fatty acid composition of liver microsomes and relating this to the microviscosity of the membranes. In young rats the different experimental diets did not produce any difference in delta 6-desaturase (D6D) activity on either substrate suggesting that, when D6D activity is at or near its peak, the variations in diet tested are unable to influence it. In the old animals the rate of 6-desaturation of linoleic and particularly of alpha-linolenic acid was significantly greater in the B diet fed animals than in the A diet fed. The effects of the diets on the fatty acid composition of liver microsomes were consistent with the findings with regard to 6-desaturation. Administration of GLA partially corrected the abnormalities of n-6 essential fatty acid (EFA) metabolism by raising the concentration of 20:4(n-6) and other 6-desaturated EFAs. Furthermore, the GLA rich diet also increased the levels of dihomo-gamma-linolenic acid and of 6-desaturated n-3 EFAs in the liver microsomes. The microviscosity of microsomal membranes as indicated by DPH polarization was correlated with the unsaturation index of the same membranes. There was a very strong correlation between the two. In both young and old rats the B diet reduced the microviscosity and increased the unsaturation index. However, the effect was much greater in the old animals.  相似文献   

18.
Gestational and postnatal changes of microsomal NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase activities were examined in rat brain. The specific activity of NADH:cytochrome b5 reductase was high at 18-19 days of gestational age, decreased to a minimum at 4 to 6 days after birth and increased thereafter. An essentially similar developmental pattern was observed for the specific activity of NADPH:cytochrome c reductase. In contrast, the specific activities of these reductases in liver microsomes were low, did not display a peak during gestation and increased steadily to a maximum at 40-50 days after birth. The rate of incorporation of [2-14C]malonyl-CoA into palmitoyl-CoA in brain microsomes was found to be high in the foetus, sharply decreased to a minimum at the time of birth and increased thereafter. The activity of fatty acid elongation in liver microsomes was much less than that in brain during gestation and increased rapidly after birth to values at 50-60 days 20-fold greater than the foetal activity. NADH and NADPH were equally effective for brain microsomal fatty acid elongation. Regional distribution of cytochrome reductase activities and the activity of fatty acid elongation showed the lowest specific activity in cerebellum. These results suggest that brain microsomal electron transport may be correlated with the developmental alteration in fatty acid elongation.  相似文献   

19.
The present study examines the effect of the acetylenic thioester dec-2-ynoyl-CoA (delta 2 10 identical to 1-CoA) on the microsomal fatty acid chain elongation pathway in rat liver. When the individual reactions of the elongation system were measured in the presence of delta 2 10 identical to 1-CoA, the trans-2-enoyl-CoA reductase activity was markedly inhibited (Ki = 2.5 microM), whereas the activities of the condensing enzyme, the beta-ketoacyl-CoA reductase, and the beta-hydroxyacyl-CoA dehydrase were not affected. The absence of inhibition of total microsomal fatty acid elongation was attributed to the significant accumulation of the intermediates, beta-hydroxyacyl-CoA and trans-2-enoyl-CoA, without formation of the saturated elongated product, indicating that the trans-2-enoyl-CoA reductase-catalyzed reaction was the only site affected by the inhibitor. The nature of the inhibition was noncompetitive. In contrast to the delta 2 10 identical to 1-CoA, delta 3 10 identical to 1-CoA did not inhibit trans-2-enoyl-CoA reductase activity, suggesting that the mode of inhibition was not via formation of the 2,3-allene derivative. Based on the observation (a) that p-chloromercuribenzoate markedly inhibits reductase activity, (b) that dithiothreitol protects the enzyme against inactivation by delta 2 10 identical to 1-CoA, (c) of the spectral manifestation of the interaction between thiol reagents and delta 2 10 identical to 1-CoA depicting an absorbance peak similar to that of the beta-ketoacyl thioester-Mg2+ enolate complex, (d) of a similar absorbance spectrum formed by the interaction between delta 2 10 identical to 1-CoA and liver microsomes, and (e) of the absence of formation of a similar spectrum by delta 3 10 identical to 1-CoA, trans-2-10:1-CoA, or delta 2 10 identical to 1 free acid with liver microsomes, we propose that delta 2 10 identical to 1-CoA inactivates trans-2-enoyl-CoA reductase by covalently binding to a critical sulfhydryl group at or in close proximity to the active site of the enzyme.  相似文献   

20.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号