首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the impact of birth seasonality (seasonal oscillations in the birth rate) on the dynamics of acute, immunizing childhood infectious diseases. Previous research has explored the effect of human birth seasonality on infectious disease dynamics using parameters appropriate for the developed world. We build on this work by including in our analysis an extended range of baseline birth rates and amplitudes, which correspond to developing world settings. Additionally, our analysis accounts for seasonal forcing both in births and contact rates. We focus in particular on the dynamics of measles. In the absence of seasonal transmission rates or stochastic forcing, for typical measles epidemiological parameters, birth seasonality induces either annual or biennial epidemics. Changes in the magnitude of the birth fluctuations (birth amplitude) can induce significant changes in the size of the epidemic peaks, but have little impact on timing of disease epidemics within the year. In contrast, changes to the birth seasonality phase (location of the peak in birth amplitude within the year) significantly influence the timing of the epidemics. In the presence of seasonality in contact rates, at relatively low birth rates (20 per 1000), birth amplitude has little impact on the dynamics but does have an impact on the magnitude and timing of the epidemics. However, as the mean birth rate increases, both birth amplitude and phase play an important role in driving the dynamics of the epidemic. There are stronger effects at higher birth rates.  相似文献   

2.
More than a century of ecological studies have demonstrated the importance of demography in shaping spatial and temporal variation in population dynamics. Surprisingly, the impact of seasonal recruitment on infectious disease systems has received much less attention. Here, we present data encompassing 78 years of monthly natality in the USA, and reveal pronounced seasonality in birth rates, with geographical and temporal variation in both the peak birth timing and amplitude. The timing of annual birth pulses followed a latitudinal gradient, with northern states exhibiting spring/summer peaks and southern states exhibiting autumn peaks, a pattern we also observed throughout the Northern Hemisphere. Additionally, the amplitude of United States birth seasonality was more than twofold greater in southern states versus those in the north. Next, we examined the dynamical impact of birth seasonality on childhood disease incidence, using a mechanistic model of measles. Birth seasonality was found to have the potential to alter the magnitude and periodicity of epidemics, with the effect dependent on both birth peak timing and amplitude. In a simulation study, we fitted an susceptible-exposed-infected-recovered model to simulated data, and demonstrated that ignoring birth seasonality can bias the estimation of critical epidemiological parameters. Finally, we carried out statistical inference using historical measles incidence data from New York City. Our analyses did not identify the predicted systematic biases in parameter estimates. This may be owing to the well-known frequency-locking between measles epidemics and seasonal transmission rates, or may arise from substantial uncertainty in multiple model parameters and estimation stochasticity.  相似文献   

3.
Epidemics of respiratory syncytial virus (RSV) are known to occur in wintertime in temperate countries including the United States, but there is a limited understanding of the importance of climatic drivers in determining the seasonality of RSV. In the United States, RSV activity is highly spatially structured, with seasonal peaks beginning in Florida in November through December and ending in the upper Midwest in February-March, and prolonged disease activity in the southeastern US. Using data on both age-specific hospitalizations and laboratory reports of RSV in the US, and employing a combination of statistical and mechanistic epidemic modeling, we examined the association between environmental variables and state-specific measures of RSV seasonality. Temperature, vapor pressure, precipitation, and potential evapotranspiration (PET) were significantly associated with the timing of RSV activity across states in univariate exploratory analyses. The amplitude and timing of seasonality in the transmission rate was significantly correlated with seasonal fluctuations in PET, and negatively correlated with mean vapor pressure, minimum temperature, and precipitation. States with low mean vapor pressure and the largest seasonal variation in PET tended to experience biennial patterns of RSV activity, with alternating years of “early-big” and “late-small” epidemics. Our model for the transmission dynamics of RSV was able to replicate these biennial transitions at higher amplitudes of seasonality in the transmission rate. This successfully connects environmental drivers to the epidemic dynamics of RSV; however, it does not fully explain why RSV activity begins in Florida, one of the warmest states, when RSV is a winter-seasonal pathogen. Understanding and predicting the seasonality of RSV is essential in determining the optimal timing of immunoprophylaxis.  相似文献   

4.
We examine the role of host seasonal breeding, host seasonal social aggregation and partial immunity in affecting wildlife disease dynamics, focusing on the dynamics of house finch conjunctivitis (Mycoplasma gallisepticum (MG) in Carpodacus mexicanus). This case study of an unmanaged emerging infectious disease provides useful insight into the important role of seasonal factors in driving ongoing disease dynamics. Seasonal breeding can force recurrent epidemics through the input of fresh susceptibles, which will clearly affect a wide variety of wildlife disease dynamics. Seasonal patterns of social aggregation and foraging behaviour could change transmission dynamics. We use latitudinal variation in the timing of breeding, and social systems to model seasonal dynamics of house finch conjunctivitis across eastern North America. We quantify the patterns of seasonal breeding, and social aggregation across a latitudinal gradient in the eastern range of the house finch, supplemented with known field and laboratory information on immunity to MG in finches. We then examine the interactions of these factors in a theoretical model of disease dynamics. We find that both forms of seasonality could explain the dynamics of the house finch-MG system, and that these factors could have important effects on the dynamics of wildlife diseases generally. In particular, while either alone is sufficient to create recurrent cycles of prevalence in a population with an endemic disease, both are required to produce the specific semi-annual pattern of disease prevalence seen in the house finch conjunctivitis system.  相似文献   

5.
Environmental variation connected with seasonality is likely to affect the evolution of life-history strategies in ectotherms, but there is no consensus as to how important life-history traits like body size are influenced by environmental variation along seasonal gradients. We compared adult body size, skeletal growth, mean age, age at first reproduction and longevity among 11 common frog (Rana temporaria) populations sampled along a 1,600-km-long latitudinal gradient across Scandinavia. Mean age, age at first reproduction and longevity increased linearly with decreasing growth season length. Lifetime activity (i.e. the estimated number of active days during life-time) was highest at mid-latitudes and females had on average more active days throughout their lives than males. Variation in body size was due to differences in lifetime activity among populations??individuals (especially females) were largest where they had the longest cumulative activity period??as well as to differences between populations in skeletal growth rate as determined by skeletochronological analyses. Especially, males grew faster at intermediate latitudes. While life-history trait variation was strongly associated with latitude, the direction and shape of these relationships were sex- and trait-specific. These context-dependent relationships may be the result of life-history trade-offs enforced by differences in future reproductive opportunities and time constraints among the populations. Thus, seasonality appears to be an important environmental factor shaping life-history trait variation in common frogs.  相似文献   

6.
Evolution toward multi-year periodicity in epidemics   总被引:1,自引:1,他引:0  
We studied why many diseases has multi‐year period in their epidemiological dynamics, whereas a main source of the fluctuation is a seasonality with period of 1 year. Previous studies using a compartment model with seasonality in transmission rate succeed to generate a multi‐year epidemiological dynamics, when, in particular, the seasonal difference is large. However, these studies have focused on the dynamical consequence of seasonal forcing in epidemiological dynamics and an adaptation of pathogens in the seasonal environment has been neglected. In this paper, we describe our study of the evolution of pathogen's sensitivity to seasonality and show that a larger fluctuation in the transmission rate can be favored in the life history evolution of pathogens, suggesting that multi‐year periodicity may evolve by natural selection. Our result proposes a new aspect of the evolution of multi‐year epidemics.  相似文献   

7.
Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007-2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.  相似文献   

8.
Epidemiological effects of seasonal oscillations in birth rates   总被引:3,自引:0,他引:3  
Seasonal oscillations in birth rates are ubiquitous in human populations. These oscillations might play an important role in infectious disease dynamics because they induce seasonal variation in the number of susceptible individuals that enter populations. We incorporate seasonality of birth rate into the standard, deterministic susceptible-infectious-recovered (SIR) and susceptible-exposed-infectious-recovered (SEIR) epidemic models and identify parameter regions in which birth seasonality can be expected to have observable epidemiological effects. The SIR and SEIR models yield similar results if the infectious period in the SIR model is compared with the "infected period" (the sum of the latent and infectious periods) in the SEIR model. For extremely transmissible pathogens, large amplitude birth seasonality can induce resonant oscillations in disease incidence, bifurcations to stable multi-year epidemic cycles, and hysteresis. Typical childhood infectious diseases are not sufficiently transmissible for their asymptotic dynamics to be likely to exhibit such behaviour. However, we show that fold and period-doubling bifurcations generically occur within regions of parameter space where transients are phase-locked onto cycles resembling the limit cycles beyond the bifurcations, and that these phase-locking regions extend to arbitrarily small amplitude of seasonality of birth rates. Consequently, significant epidemiological effects of birth seasonality may occur in practice in the form of transient dynamics that are sustained by demographic stochasticity.  相似文献   

9.
Lyme disease imposes increasing global public health challenges. To better understand the joint effects of seasonal temperature variation and host community composition on the pathogen transmission, a stage-structured periodic model is proposed by integrating seasonal tick development and activity, multiple host species and complex pathogen transmission routes between ticks and reservoirs. Two thresholds, one for tick population dynamics and the other for Lyme-pathogen transmission dynamics, are identified and shown to fully classify the long-term outcomes of the tick invasion and disease persistence. Seeding with the realistic parameters, the tick reproduction threshold and Lyme disease spread threshold are estimated to illustrate the joint effects of the climate change and host community diversity on the pattern of Lyme disease risk. It is shown that climate warming can amplify the disease risk and slightly change the seasonality of disease risk. Both the “dilution effect” and “amplification effect” are observed by feeding the model with different possible alternative hosts. Therefore, the relationship between the host community biodiversity and disease risk varies, calling for more accurate measurements on the local environment, both biotic and abiotic such as the temperature and the host community composition.  相似文献   

10.
We present a susceptibles-exposed-infectives (SEI) model to analyze the effects of seasonality on epidemics, mainly of rabies, in a wide range of wildlife species. Model parameters are cast as simple allometric functions of host body size. Via nonlinear analysis, we investigate the dynamical behavior of the disease for different levels of seasonality in the transmission rate and for different values of the pathogen basic reproduction number (R(0)) over a broad range of body sizes. While the unforced SEI model exhibits long-term epizootic cycles only for large values of R(0), the seasonal model exhibits multiyear periodicity for small values of R(0). The oscillation period predicted by the seasonal model is consistent with those observed in the field for different host species. These conclusions are not affected by alternative assumptions for the shape of seasonality or for the parameters that exhibit seasonal variations. However, the introduction of host immunity (which occurs for rabies in some species and is typical of many other wildlife diseases) significantly modifies the epidemic dynamics; in this case, multiyear cycling requires a large level of seasonal forcing. Our analysis suggests that the explicit inclusion of periodic forcing in models of wildlife disease may be crucial to correctly describe the epidemics of wildlife that live in strongly seasonal environments.  相似文献   

11.
Host condition is often likely to influence parasite virulence. Furthermore, condition may often be correlated with host density, and therefore, it is important to understand the role of density-dependent virulence (DDV). We examine the consequences of DDV to the evolution of parasites in both seasonal and non-seasonal environments. In particular, we consider seasonality in host birth rate that results in a fluctuating host density and therefore a variable virulence. We show that parasites are selected for lower exploitation, and therefore lower transmission and virulence as the strength of DDV increases without seasonality. This is an important insight from our models; DDV has the opposite effect on the evolution of parasites to that of higher baseline mortality. Our key result is that although seasonality does not affect the evolution of virulence in classical models, with DDV parasites in seasonal environments are predicted to evolve to be more acute. This suggests that in more seasonal environments wildlife disease is likely to be more rather than less virulent if DDV is widespread.  相似文献   

12.
Campylobacter is among the most important agents of enteritis in developed countries. We have described the potential environmental determinants of the seasonal pattern of infection with campylobacter in Europe, Canada, Australia and New Zealand. Specifically, we investigated the role of climate variability on laboratory-confirmed cases of campylobacter infection from 15 populations. Regression analysis was used to quantify the associations between timing of seasonal peaks in infection in space and time. The short-term association between weekly weather and cases was also investigated using Poisson regression adapted for time series data. All countries in our study showed a distinct seasonality in campylobacter transmission, with many, but not all, populations showing a peak in spring. Countries with milder winters have peaks of infection earlier in the year. The timing of the peak of infection is weakly associated with high temperatures 3 months previously. Weekly variation in campylobacter infection in one region of the UK appeared to be little affected by short-term changes in weather patterns. The geographical variation in the timing of the seasonal peak suggests that climate may be a contributing factor to campylobacter transmission. The main driver of seasonality of campylobacter remains elusive and underscores the need to identify the major serotypes and routes of transmission for this disease.  相似文献   

13.
Many diverse infectious diseases exhibit seasonal dynamics. Seasonality in disease incidence has been attributed to seasonal changes in pathogen transmission rates, resulting from fluctuations in extrinsic climate factors. Multi-strain infectious diseases with strain-specific seasonal signatures, such as cholera, indicate that a range of seasonal patterns in transmission rates is possible in identical environments. We therefore consider pathogens capable of evolving their 'seasonal phenotype', a trait that determines the sensitivity of their transmission rates to environmental variability. We introduce a theoretical framework, based on adaptive dynamics, for predicting the evolution of disease dynamics in seasonal environments. Changes in the seasonality of environmental factors are one important avenue for the effects of climate change on disease. This model also provides a framework for examining these effects on pathogen evolution and associated disease dynamics. An application of this approach gives an explanation for the recent cholera strain replacement in Bangladesh, based on changes in monsoon rainfall patterns.  相似文献   

14.
Seasonality and the dynamics of infectious diseases   总被引:8,自引:1,他引:7  
Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host–pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite–host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions.  相似文献   

15.
An important component of pathogen evolution at the population level is evolution within hosts. Unless evolution within hosts is very slow compared to the duration of infection, the composition of pathogen genotypes within a host is likely to change during the course of an infection, thus altering the composition of genotypes available for transmission as infection progresses. We develop a nested modeling approach that allows us to follow the evolution of pathogens at the epidemiological level by explicitly considering within‐host evolutionary dynamics of multiple competing strains and the timing of transmission. We use the framework to investigate the impact of short‐sighted within‐host evolution on the evolution of virulence of human immunodeficiency virus (HIV), and find that the topology of the within‐host adaptive landscape determines how virulence evolves at the epidemiological level. If viral reproduction rates increase significantly during the course of infection, the viral population will evolve a high level of virulence even though this will reduce the transmission potential of the virus. However, if reproduction rates increase more modestly, as data suggest, our model predicts that HIV virulence will be only marginally higher than the level that maximizes the transmission potential of the virus.  相似文献   

16.
Seasonal change in the incidence of infectious diseases is a common phenomenon in both temperate and tropical climates. However, the mechanisms responsible for seasonal disease incidence, and the epidemiological consequences of seasonality, are poorly understood with rare exception. Standard epidemiological theory and concepts such as the basic reproductive number R0 no longer apply, and the implications for interventions that themselves may be periodic, such as pulse vaccination, have not been formally examined. This paper examines the causes and consequences of seasonality, and in so doing derives several new results concerning vaccination strategy and the interpretation of disease outbreak data. It begins with a brief review of published scientific studies in support of different causes of seasonality in infectious diseases of humans, identifying four principal mechanisms and their association with different routes of transmission. It then describes the consequences of seasonality for R0, disease outbreaks, endemic dynamics and persistence. Finally, a mathematical analysis of routine and pulse vaccination programmes for seasonal infections is presented. The synthesis of seasonal infectious disease epidemiology attempted by this paper highlights the need for further empirical and theoretical work.  相似文献   

17.
Seasonal changes in environmental drivers – such as temperature, rainfall, and resource availability – have the potential to shape infection dynamics through their reverberating effects on biological processes including host abundance and susceptibility to infection. However, seasonality varies geographically. We therefore expect marked differences in infection dynamics between regions with different seasonal patterns. By pairing extensive Avian Influenza Virus (AIV) surveillance data – 65 358 individual bird samples from 12 species of dabbling ducks sampled at 174 locations across North America – with quantification of seasonality using remote sensed data indicative for primary productivity (normalised differenced vegetation index, NDVI), we provide evidence that seasonal dynamics influence infection dynamics across a continent. More pronounced epidemics were seen to occur in regions experiencing a higher degree of seasonality, and epidemics of lower amplitude and longer duration occurred in regions with a more protracted and lower seasonal amplitude. These results demonstrate the potential importance of geographic variation in seasonality for explaining geographic variation in the dynamics of infectious diseases in wildlife.  相似文献   

18.
Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that "simple" virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications.  相似文献   

19.
Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.  相似文献   

20.
Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans, is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号