首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.  相似文献   

2.
Prey-predator interaction is one of the most commonly observed relationships in ecosystem. In the study of prey-predator models, it is frequently assumed that the changes in population densities are only time-dependent and the dynamics is generally represented by coupled nonlinear ordinary differential equations. In natural system, however, either prey or predator or both move from one place to another for various reasons. In such a case, their dynamic interaction depends both on time and space and requires coupled nonlinear partial differential equations for its dynamic representation. It is also well documented that prey refuges affect the interaction between prey and predator significantly. In this paper, we studied the dynamics of a diffusive prey-predator interaction with prey refuge and type III response function. We have considered both one and two dimensional diffusivity in the model system and presented different stability results under the assumptions that one or both species may be mobile or sedentary. Our results showed that the system may exhibit different spatiotemporal (non-Turing) patterns, like spiral waves, patchy structures, spot pattern, or even spatiotemporal chaos depending on the refuge availability and diffusion rate of species. Another interesting finding was that the dynamic complexity in a prey-predator model increases in case of mobile predator and sedentary prey compare to mobile prey and sedentary predator while refuge availability is varied.  相似文献   

3.
The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator–prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator–prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system’s dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.  相似文献   

4.
Most of the preys are well aware of sensing predation risk. Consequently, to escape from predators they usually adopt several defense mechanisms, specially refuge themselves to become invulnerable. In view of this, a mathematical model has been formulated incorporating prey refuge, where it is assumed that prey refuge is a function of predators availability in the system. It is shown that the model system is well-posed. It has been found that the hiding level and consumption rate of predators have a suitable interrelation between them. Both the parameters act as Hopf bifurcation parameters, but they play opposite role in case of stabilization of the system dynamics. Also, hiding level plays crucial role in maintaining the mean density of both the populations. Furthermore, as hiding behaviour of prey is not instantaneous, so a time delay, namely hiding delay has been introduced to make the model system more realistic and it is observed that the delay parameter destabilizes the system. Modelling approach through fractional calculus has been further deployed to study how the process of forgetting life history influences the dynamical intricacy of the population level dynamics. All the analytical findings have been testified by proper numerical performances.  相似文献   

5.
Within the framework of a general equilibrium model we study the long-run dynamics of a prey-predator model in the presence of an alternative prey. Our results show that sustainability, i.e. a positive value of the population in the long run, essentially depends on individual harvesting efforts and digesting factors relative to alternative prey. A detailed bifurcation analysis evidences the richness of possible long-run dynamics. Our model clearly shows that the role of an alternative prey must be taken into consideration when studying prey-predator dynamics.  相似文献   

6.
This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity.  相似文献   

7.
A prey–predator discrete-time model with a Holling type I functional response is investigated by incorporating a prey refuge. It is shown that a refuge does not always stabilize prey–predator interactions. A prey refuge in some cases produces even more chaotic, random-like dynamics than without a refuge and prey population outbreaks appear. Stability analysis was performed in order to investigate the local stability of fixed points as well as the several local bifurcations they undergo. Numerical simulations such as parametric basins of attraction, bifurcation diagrams, phase plots and largest Lyapunov exponent diagrams are executed in order to illustrate the complex dynamical behavior of the system.  相似文献   

8.
祁君  苏志勇 《生态学报》2011,31(24):7471-7478
在经典的捕食食饵系统中考虑到由于捕食效应对食饵种群带来的正向调节作用后,提出了具有捕食正效应的捕食-食饵系统.通过对模型的动力学行为的分析,从理论上说明了正向调节作用对系统的影响,并就第一象限内平衡点存在时的相图解释了捕食正效应的作用.结果表明:(1)捕食系统中适当的正向调节作用会增加系统的稳定性;(2)当捕食正效应达到一定的程度后系统拥有一个不稳定的极限环;(3)当捕食正效应过大时会使系统的稳定性发生变化,使捕食者种群与食饵种群同时趋向无穷,出现了调节放纵现象.这些结果在保护生物学中具有重要的意义.  相似文献   

9.
We consider the effect of coupling an otherwise chaotic population to a refuge. A rich set of dynamical phenomena is uncovered. We consider two forms of density dependence in the active population: logistic and exponential. In the former case, the basin of attraction for stable population growth becomes fractal, and the bifurcation diagrams for the active and refuge populations are chaotic over a wide range of parameter space. In the case of exponential density dependence, the dynamics are unconditionally stable (in that the population size is always positive and finite), and chaotic behavior is completely eradicated for modest amounts of dispersal. We argue that the use of exponential density dependence is more appropriate, theoretically as well as empirically, in a model of refuge dynamics.  相似文献   

10.
Several field data and experiments on a terrestrial vertebrates exhibited that the fear of predators would cause a substantial variability of prey demography. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. Based on the experimental evidence, we proposed and analyzed a prey-predator system introducing the cost of fear into prey reproduction with Holling type-II functional response. We investigate all the biologically feasible equilibrium points, and their stability is analyzed in terms of the model parameters. Our mathematical analysis exhibits that for strong anti-predator responses can stabilize the prey-predator interactions by ignoring the existence of periodic behaviors. Our model system undergoes Hopf bifurcation by considering the birth rate r0 as a bifurcation parameter. For larger prey birth rate, we investigate the transition to a stable coexisting equilibrium state, with oscillatory approach to this equilibrium state, indicating that the greatest characteristic eigenvalues are actually a pair of imaginary eigenvalues with real part negative, which is increasing for r0. We obtained the conditions for the occurrence of Hopf bifurcation and conditions governing the direction of Hopf bifurcation, which imply that the prey birth rate will not only influence the occurrence of Hopf bifurcation but also alter the direction of Hopf bifurcation. We identify the parameter regions associated with the extinct equilibria, predator-free equilibria and coexisting equilibria with respect to prey birth rate, predator mortality rates. Fear can stabilize the predator-prey system at an interior steady state, where all the species can exists together, or it can create the oscillatory coexistence of all the populations. We performed some numerical simulations to investigate the relationship between the effects of fear and other biologically related parameters (including growth/decay rate of prey/predator), which exhibit the impact that fear can have in prey-predator system. Our numerical illustrations also demonstrate that the prey become less sensitive to perceive the risk of predation with increasing prey growth rate or increasing predators decay rate.  相似文献   

11.
Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics.  相似文献   

12.
Most classical prey-predator models do not take into account the behavioural structure of the population. Usually, the predator and the prey populations are assumed to be homogeneous, i.e. all individuals behave in the same way. In this work, we shall take into account different tactics that predators can use for exploiting a common self-reproducing resource, the prey population. Predators fight together in order to keep or to have access to captured prey individuals. Individual predators can use two behavioural tactics when they encounter to dispute a prey, the classical hawk and dove tactics. We assume two different time scales. The fast time scale corresponds to the inter-specific searching and handling for the prey by the predators and the intra-specific fighting between the predators. The slow time scale corresponds to the (logistic) growth of the prey population and mortality of the predator. We take advantage of the two time scales to reduce the dimension of the model and to obtain an aggregated model that describes the dynamics of the total predator and prey densities at the slow time scale. We present the bifurcation analysis of the model and the effects of the different predator tactics on persistence and stability of the prey-predator community are discussed.  相似文献   

13.
An analysis is presented for a model of a two-species predator-prey system where each species can be harvested or stocked. Using methods from bifurcation theory the qualitative nature of the steady-state solutions is examined. The effect of harvesting and stocking rates and the prey carrying capacity is examined in detail.  相似文献   

14.
针对一类令布食饵自虞护的食饵-捕食系统,当环境变化时,系统参数的扰动处于动态状态,利用其扰动边界的特性,通过设计模糊滑模控制器将失控系统引至平稳轨道,并使系统全局稳定,从理论上实现了失控系统的有效控制,为防治食饵种群灭绝,引起食物链断裂,导致生态平衡破坏提供了一定的理论依据.最后的仿真结果表明了此方法在理论上的有效性.  相似文献   

15.
In this paper, we consider an interaction of prey and predator species where prey species have the ability of group defence. Thresholds, equilibria and stabilities are determined for the system of ordinary differential equations. Taking carrying capacity as a bifurcation parameter, it is shown that a Hopf bifurcation can occur implying that if the carrying capacity is made sufficiently large by enrichment of the environment, the model predicts the eventual extinction of the predator providing strong support for the so-called ‘paradox of enrichment’.  相似文献   

16.
One of the simplest predator-prey models that tracks the quantity and the quality of prey is the one proposed by [I. Loladze, Y. Kuang, and J.J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling, Bull. Math. Biol. 62 (2000) pp. 1137-1162.] (LKE model). In it, the ratio of two essential chemical elements, carbon to phosphorus, C:P, represents prey quality. However, that model does not explicitly track P neither in the prey nor in the media that supports the prey. Here, we extend the LKE model by mechanistically deriving and accounting for P in both the prey and the media. Bifurcation diagrams and simulations show that our model behaves similarly to the LKE model. However, in the intermediate range of the carrying capacity, especially near the homoclinic bifurcation point for the carrying capacity, quantitative behaviour of our model is different. We analyze positive invariant region and stability of boundary steady states. We show that as the uptake rate of P by producer becomes infinite, LKE models become the limiting case of our model. Furthermore, our model can be readily extended to multiple producers and consumers.  相似文献   

17.
Roy S  Chattopadhyay J 《Bio Systems》2007,90(2):371-378
Simple predator-prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the 'paradox of enrichment'. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator-prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator-prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer-grazer system persists for only an intermediate zone of production--a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator-prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig's paradox.  相似文献   

18.
One of the simplest predator-prey models that tracks the quantity and the quality of prey is the one proposed by [I. Loladze, Y. Kuang, and J.J. Elser, Stoichiometry in producer-grazer systems: Linking energy flow with element cycling, Bull. Math. Biol. 62 (2000) pp. 1137–1162.] (LKE model). In it, the ratio of two essential chemical elements, carbon to phosphorus, C:P, represents prey quality. However, that model does not explicitly track P neither in the prey nor in the media that supports the prey. Here, we extend the LKE model by mechanistically deriving and accounting for P in both the prey and the media. Bifurcation diagrams and simulations show that our model behaves similarly to the LKE model. However, in the intermediate range of the carrying capacity, especially near the homoclinic bifurcation point for the carrying capacity, quantitative behaviour of our model is different. We analyze positive invariant region and stability of boundary steady states. We show that as the uptake rate of P by producer becomes infinite, LKE models become the limiting case of our model. Furthermore, our model can be readily extended to multiple producers and consumers.  相似文献   

19.
Three-species food-chain models, in which the prey population exhibits group defense, are considered. Using the carrying capacity of the environment as the bifurcation parameter, it is shown that the model without delay undergoes a sequence of Hopf bifurcations. In the model with delay it is shown that using a delay as a bifurcation parameter, a Hopf bifurcation can also occur in this case. These occurrences may be interpreted as showing that a region of local stability (survival) may exist even though the positive steady states are unstable. A computer code BIFDD is used to determine the stability of the bifurcation solutions of a delay model.  相似文献   

20.
We study the effects of density dependent migrations on the stability of a predator-prey model in a patchy environment which is composed with two sites connected by migration. The two patches are different. On the first patch, preys can find resource but can be captured by predators. The second patch is a refuge for the prey and thus predators do not have access to this patch. We assume a repulsive effect of predator on prey on the resource patch. Therefore, when the predator density is large on that patch, preys are more likely to leave it to return to the refuge. We consider two models. In the first model, preys leave the refuge to go to the resource patch at constant migration rates. In the second model, preys are assumed to be in competition for the resource and leave the refuge to the resource patch according to the prey density. We assume two different time scales, a fast time scale for migration and a slow time scale for population growth, mortality and predation. We take advantage of the two time scales to apply aggregation of variables methods and to obtain a reduced model governing the total prey and predator densities. In the case of the first model, we show that the repulsive effect of predator on prey has a stabilizing effect on the predator-prey community. In the case of the second model, we show that there exists a window for the prey proportion on the resource patch to ensure stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号