共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-conventional Frizzled ligands and Wnt receptors 总被引:2,自引:0,他引:2
The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of β-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate β-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions. 相似文献
2.
Jingqiang Wang Wenqian Song Ruikai Yang Chao Li Ting Wu Xiao Bing Dong Bin Zhou Xizhi Guo Jianfeng Chen Zhiyong Liu Qing Cissy Yu Wen Li Junfen Fu Yi Arial Zeng 《Cell reports》2021,34(13):108897
- Download : Download high-res image (233KB)
- Download : Download full-size image
3.
4.
5.
Fabio Valenti Jessica Ibetti Yuko Komiya Melissa Baxter Anna Maria Lucchese Lauren Derstine Claudia Covaciu Valeria Rizzo Renza Vento Giuseppe Russo Marcella Macaluso Franco Cotelli Daniele Castiglia Cara J. Gottardi Raymond Habas Antonio Giordano Gianfranco Bellipanni 《Journal of cellular biochemistry》2015,116(3):418-430
6.
The pRb/E2F and Wnt/beta-catenin pathways are two of the most frequently deregulated pathways in human cancers. In this study, we show that E2F1 up-regulates the expression of axin2. Further, we show that axin2 can repress Wnt signalling leading to reduced cell growth and increased cell death. This represents cross-talk between major pathways involved in the formation of tumours. We use our data to suggest a novel mechanism for tumour suppression. 相似文献
7.
Oosterveen T Coudreuse DY Yang PT Fraser E Bergsma J Dale TC Korswagen HC 《Developmental biology》2007,308(2):438-448
Axin is a central component of the canonical Wnt signaling pathway that interacts with the adenomatous polyposis coli protein APC and the kinase GSK3beta to downregulate the effector beta-catenin. In the nematode Caenorhabditis elegans, canonical Wnt signaling is negatively regulated by the highly divergent Axin ortholog PRY-1. Mutation of pry-1 leads to constitutive activation of BAR-1/beta-catenin-dependent Wnt signaling and results in a range of developmental defects. The pry-1 null phenotype is however not fully penetrant, indicating that additional factors may partially compensate for PRY-1 function. Here, we report the cloning and functional analysis of a second Axin-like protein, which we named AXL-1. We show that despite considerable sequence divergence with PRY-1 and other Axin family members, AXL-1 is a functional Axin ortholog. AXL-1 functions redundantly with PRY-1 in negatively regulating BAR-1/beta-catenin signaling in the developing vulva and the Q neuroblast lineage. In addition, AXL-1 functions independently of PRY-1 in negatively regulating canonical Wnt signaling during excretory cell development. In contrast to vertebrate Axin and the related protein Conductin, AXL-1 and PRY-1 are not functionally equivalent. We conclude that Axin function in C. elegans is divided over two different Axin orthologs that have specific functions in negatively regulating canonical Wnt signaling. 相似文献
8.
Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation. 相似文献
9.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin. 相似文献
10.
The R-spondin protein family 总被引:1,自引:0,他引:1
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine. 相似文献
11.
Wingless/Wnt signal transduction requires distinct initiation and amplification steps that both depend on Arrow/LRP 总被引:2,自引:1,他引:2
Members of the Wg/Wnt family provide key intercellular signals during embryonic development and in the maintenance of homeostatic processes, but critical aspects of their signal transduction pathways remain controversial. We have found that canonical Wg signaling in Drosophila involves distinct initiation and amplification steps, both of which require Arrow/LRP. Expressing a chimeric Frizzled2-Arrow protein in flies that lack endogenous Wg or Arrow showed that this construct functions as an activated Wg receptor but is deficient in signal amplification. In contrast, a chimeric Arrow protein containing the dimerization domain of Torso acted as a potent amplifier of Wg signaling but could not initiate Wg signaling on its own. The two chimeric proteins synergized, so that their co-expression largely reconstituted the signaling levels achieved by expressing Wg itself. The amplification function of Arrow/LRP appears to be particularly important for long-range signaling, and may reflect a general mechanism for potentiating signals in the shallow part of a morphogen gradient. 相似文献
12.
Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins 总被引:1,自引:0,他引:1
After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp. 相似文献
13.
14.
15.
It has been shown that accumulation of free beta-catenin leads to mobility shift of adenomatous polyposis coli (APC) protein and that Axin facilitates this process. Here we show that the beta-catenin-mediated mobility shift of APC is due to phosphorylation of two domains of APC by casein kinase 1epsilon/glycogen synthase kinase 3beta and unknown kinase(s), respectively. Interestingly, our results suggest that this process does not require Axin. The phosphorylated APC showed higher affinity to beta-catenin in vivo, and fragments of APC containing the phosphorylated domains can inhibit beta-catenin/Tcf-mediated reporter activity regardless of their ability to reduce the level of beta-catenin. From our data we propose a new role of APC: accumulation of excessive cytoplasmic beta-catenin induces phosphorylation of APC and the phosphorylated APC retains beta-catenin in cytoplasm to prevent excessive beta-catenin signaling. The retained beta-catenin in cytoplasm by APC may be down-regulated by Axin 2, which is induced by beta-catenin/Tcf signaling. 相似文献
16.
Kikuchi A 《Cytokine & growth factor reviews》1999,10(3-4):255-265
The Wnt signaling pathway is conserved in various species from worms to mammals, and plays important roles in development, cellular proliferation, and differentiation. The molecular mechanisms by which the Wnt signal regulates cellular functions are becoming increasingly well understood. Wnt stabilizes cytoplasmic β-catenin, which stimulates the expression of genes including c-myc, c-jun, fra-1, and cyclin D1. Axin and its homolog Axil, newly recognized as components of the Wnt signaling pathway, negatively regulate this pathway. Other components of the Wnt signaling pathway, including Dvl, glycogen synthase kinase-3β (GSK-3β), β-catenin, and adenomatous polyposis coli (APC), interact with Axin, and the phosphorylation and stability of β-catenin are regulated in the Axin complex. Axil has similar functions to Axin. Thus, Axin and Axil act as scaffold proteins in the Wnt signaling pathway, thereby modulating the Wnt-dependent cellular functions. 相似文献
17.
Lin C Fisher AV Yin Y Maruyama T Veith GM Dhandha M Huang GJ Hsu W Ma L 《Developmental biology》2011,(1):40-50
Proper patterning and growth of oral structures including teeth, tongue, and palate rely on epithelial–mesenchymal interactions involving coordinated regulation of signal transduction. Understanding molecular mechanisms underpinning oral–facial development will provide novel insights into the etiology of common congenital defects such as cleft palate. In this study, we report that ablating Wnt signaling in the oral epithelium blocks the formation of palatal rugae, which are a set of specialized ectodermal appendages serving as Shh signaling centers during development and niches for sensory cells and possibly neural crest related stem cells in adults. Lack of rugae is also associated with retarded anteroposterior extension of the hard palate and precocious mid-line fusion. These data implicate an obligatory role for canonical Wnt signaling in rugae development. Based on this complex phenotype, we propose that the sequential addition of rugae and its morphogen Shh, is intrinsically coupled to the elongation of the hard palate, and is critical for modulating the growth orientation of palatal shelves. In addition, we observe a unique cleft palate phenotype at the anterior end of the secondary palate, which is likely caused by the severely underdeveloped primary palate in these mutants. Last but not least, we also discover that both Wnt and Shh signalings are essential for tongue development. We provide genetic evidence that disruption of either signaling pathway results in severe microglossia. Altogether, we demonstrate a dynamic role for Wnt-β-Catenin signaling in the development of the oral apparatus. 相似文献
18.
Nam JS Park E Turcotte TJ Palencia S Zhan X Lee J Yun K Funk WD Yoon JK 《Developmental biology》2007,311(1):124-135
The R-spondin (Rspo) family of proteins consists of secreted cysteine-rich proteins that can activate β-catenin signaling via the Frizzled/LRP5/6 receptor complex. Here, we report that targeted inactivation of the mouse Rspo2 gene causes developmental limb defects, especially in the hindlimb. Although the initiation of the expression of apical ectodermal ridge (AER)-specific genes, including fibroblast growth factor 8 (FGF8) and FGF4 occurred normally, the maintenance of these marker expressions was significantly defective in the hindlimb of Rspo2(−/−) mice. Consistent with the ligand role of R-spondins in the Wnt/β-catenin signaling pathway, expression of Axin2 and Sp8, targets for β-catenin signaling, within AER was greatly reduced in Rspo2(−/−) embryos. Furthermore, sonic hedgehog (Shh) signaling within the hindlimbs of Rspo2(−/−) mice was also significantly decreased. Rspo2 is expressed in the AER of all limb buds, however the stunted phenotype is significantly more severe in the hindlimbs than the forelimbs and strongly biased to the left side. Our findings strongly suggest that Rspo2 expression in the AER is required for AER maintenance likely by regulating Wnt/β-catenin signaling. 相似文献
19.
Tezuka N Brown AM Yanagawa S 《Biochemical and biophysical research communications》2007,357(3):648-654
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes. 相似文献