首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most low-resource settings, microscopy still is the standard method for diagnosis of cutaneous leishmaniasis, despite its limited sensitivity. In Ethiopia, the more sensitive molecular methods are not yet routinely used. This study compared five PCR methods with microscopy on two sample types collected from patients with a suspected lesion to advise on optimal diagnosis of Leishmania aethiopica. Between May and July 2018, skin scrapings (SS) and blood exudate from the lesion spotted on filter paper (dry blood spot, DBS) were collected for PCR from 111 patients of four zones in Southern Ethiopia. DNA and RNA were simultaneously extracted from both sample types. DNA was evaluated by a conventional PCR targeting ITS-1 and three probe-based real-time PCRs: one targeting the SSU 18S rRNA and two targeting the kDNA minicircle sequence (the ‘Mary kDNA PCR’ and a newly designed ‘LC kDNA PCR’ for improved L. aethiopica detection). RNAs were tested with a SYBR Green-based RT-PCR targeting spliced leader (SL) RNA. Giemsa-stained SS smears were examined by microscopy. Of the 111 SS, 100 were positive with at least two methods. Sensitivity of microscopy, ITS PCR, SSU PCR, Mary kDNA PCR, LC kDNA PCR and SL RNA PCR were respectively 52%, 22%, 64%, 99%, 100% and 94%. Microscopy-based parasite load correlated well with real-time PCR Ct-values. Despite suboptimal sample storage for RNA detection, the SL RNA PCR resulted in congruent results with low Ct-values. DBS collected from the same lesion showed lower PCR positivity rates compared to SS. The kDNA PCRs showed excellent performance for diagnosis of L. aethiopica on SS. Lower-cost SL RNA detection can be a complementary high-throughput tool. DBS can be used for PCR in case microscopy is negative, the SS sample can be sent to the referral health facility where kDNA PCR method is available.  相似文献   

2.
Kim YH  Yang I  Bae YS  Park SR 《BioTechniques》2008,44(4):495-6, 498, 500 passim
The performance of thermal cyclers for polymerase chain reactions (PCR) is of great concern in terms of the reliability of PCR-based assays, particularly when rapid cycling conditions are applied to small volume reactions. In this work, the precision of the temperature controls during rapid thermal cycling was measured in 19 commercial thermal cyclers of 8 different models. The temperatures of test solutions in specific locations in each thermal block were simultaneously monitored at 1 s intervals during thermal cycling. A temperature-sensitive multiplex PCR was run in parallel to assess undesirable PCR results caused by poor temperature control. Under the given conditions (20 s of annealing time and 20 microL reaction volume), a majority of the tested instruments showed prominent curving, undershooting, and/or overshooting in their temperature profiles, which substantially influenced the results of the temperature-sensitive multiplex PCR. Variations between wells were also observed in most instruments. It is strongly hoped that these problems will be addressed by manufacturers and that they will make substantial improvements in the precision and efficiency of thermal cyclers. In the meantime, users of thermal cyclers might be able to avoid unexpected poor outcomes of sensitive PCR-based assays by designing their PCR protocols with these findings in mind.  相似文献   

3.
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.  相似文献   

4.
Summary Polymerase chain reaction (PCR)in situ is a new technique which promises to enhance considerably our ability to detect a few copies of target nucleic acid sequences in fixed tissues and cells. It has an enormous potential for application in diagnostic histopathology of viral diseases and in the study of gene expression. PCRin situ is, however, technically difficult, and amplification of the target DNA is only 30–300 fold. In this article we present an overview of PCRin situ techniques used to amplify both DNA and RNA targets (RT-PCRin situ). We also identify problems which can reduce the efficiency of the technique or which can give rise to false-positive results. They include (1) the inhibitory effects of cross-linking of histones to DNA or PCR amplification, (2) abstraction of PCR reagents by tissue-bonding agents which are used to coat glass slides, (3) poor denaturation of target DNA and subsequent DNA renaturation due to extensive cross-linking of histones to DNA, or because of incorrect temperature regulation of thermal cyclers, (4) false-positive results which arise from end-labelling of DNA strand breaks byTaq polymerase, and (5) diffusion of PCR products into and out of cells leading to false-positive results. We present some of the approaches that have been used to overcome some of these difficulties and suggest new avenues for investigation to improve this technique further.  相似文献   

5.
High-throughput PCR in silicon based microchamber array   总被引:4,自引:0,他引:4  
Highly integrated hybridization assay and capillary electrophoresis have improved the throughput of DNA analysis. The shift to high throughput analysis requires a high speed DNA amplification system, and several rapid PCR systems have been developed. In these thermal cyclers, the temperature was controlled by effective methodology instead of a large heating/cooling block preventing rapid thermal cycling. In our research, high speed PCR was performed using a silicon-based microchamber array and three heat blocks. The highly integrated microchamber array was fabricated by semiconductor microfabrication techniques. The temperature of the PCR microchamber was controlled by alternating between three heat blocks of different temperature. In general, silicon has excellent thermal conductivity, and the heat capacity is small in the miniaturized sample volume. Hence, the heating/cooling rate was rapid, approximately 16 °C/s. The rapid PCR was therefore completed in 18 min for 40 cycles. The thermal cycle time was reduced to 1/10 of a commercial PCR instrument (Model 9600, PE Applied Biosystems-3 h).  相似文献   

6.
Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection.  相似文献   

7.
The development of a nanoparticle-based detection methodology for sensitive and specific DNA-based diagnostic applications is described. The technology utilizes gold nanoparticles derivatized with thiol modified oligonucleotides that are designed to bind complementary DNA targets. A glass surface with arrays of immobilized oligonucleotide capture sequences is used to capture DNA targets, which are then detected via hybridization to the gold nanoparticle probes. Amplification with silver allows for detection and quantitation by measuring evanescent wave induced light scatter with low-cost optical detection systems. Compared to Cy3-based fluorescence, silver amplified gold nanoparticle probes provide for a approximately 1000-fold increase in sensitivity. Furthermore, direct detection of non-amplified genomic DNA from infectious agents is afforded through increased specificity and even identification of single nucleotide polymorphisms (SNP) in human genomic DNA appears feasible.  相似文献   

8.
9.
Rapid allelic discrimination from real-time DNA amplification   总被引:2,自引:0,他引:2  
A rapid method based on fluorescence resonance energy transfer and real-time polymerase chain reaction (PCR) is used to identify the Factor V genotype or to identify the bacterial species Bartonella qunitana or Bartonella henselae. Allelic discrimination was performed on the post-PCR product. Thermal cyclers other than the 7700 sequence detection system can be used for PCR, after which the products can be transferred to the 7700 sequence detection system for measurement of fluorescence. The Delta R (the change in fluorescence) for each dye can be collected at the final thermal cycle and an xy scatterplot used to identify the specific genotype based on graph location. There are many advantages to this method. A maximum of 96 samples can be genotyped in less than 2 h. The method tolerates a wide range of DNA concentrations and can be determined without prior DNA determination. Fluorescence is very sensitive, with a low failure rate for allelic discrimination.  相似文献   

10.
11.

Background

Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control.

Methodology

The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal.

Conclusion/Significance

The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.  相似文献   

12.
Q fever, caused by Coxiella burnetii, is a zoonosis with a worldwide distribution. A large rural area in the southeast of the Netherlands was heavily affected by Q fever between 2007 and 2009. This initiated the development of a robust and internally controlled multiplex quantitative PCR (qPCR) assay for the detection of C. burnetii DNA in veterinary and environmental matrices on suspected Q fever-affected farms. The qPCR detects three C. burnetii targets (icd, com1, and IS1111) and one Bacillus thuringiensis internal control target (cry1b). Bacillus thuringiensis spores were added to samples to control both DNA extraction and PCR amplification. The performance of the qPCR assay was investigated and showed a high efficiency; a limit of detection of 13.0, 10.6, and 10.4 copies per reaction for the targets icd, com1, and IS1111, respectively; and no cross-reactivity with the nontarget organisms tested. Screening for C. burnetii DNA on 29 suspected Q fever-affected farms during the Q fever epidemic in 2008 showed that swabs from dust-accumulating surfaces contained higher levels of C. burnetii DNA than vaginal swabs from goats or sheep. PCR inhibition by coextracted substances was observed in some environmental samples, and 10- or 100-fold dilutions of samples were sufficient to obtain interpretable signals for both the C. burnetii targets and the internal control. The inclusion of an internal control target and three C. burnetii targets in one multiplex qPCR assay showed that complex veterinary and environmental matrices can be screened reliably for the presence of C. burnetii DNA during an outbreak.  相似文献   

13.
This paper presents a micro polymerase chain reaction (PCR) chip for the DNA-based diagnosis of microorganism genes and the detection of their corresponding antibiotic-resistant genes. The micro PCR chip comprises cheap biocompatible soda-lime glass substrates with integrated thin-film platinum resistors as heating/sensing elements, and is fabricated using micro-electro-mechanical-system (MEMS) techniques in a reliable batch-fabrication process. The heating and temperature sensing elements are made of the same material and are located inside the reaction chamber in order to ensure a uniform temperature distribution. This study performs the detection of several genes associated with upper respiratory tract infection microorganisms, i.e. Streptococcus pneumoniae, Haemopilus influenze, Staphylococcu aureus, Streptococcus pyogenes, and Neisseria meningitides, together with their corresponding antibiotic-resistant genes. The lower thermal inertia of the proposed micro PCR chip relative to conventional bench-top PCR systems enables a more rapid detection operation with reduced sample and reagent consumption. The experimental data reveal that the high heating and cooling rates of the system (20 and 10 degrees C/s, respectively) permit successful DNA amplification within 15 min. The micro PCR chip is also capable of performing multiple DNA amplification, i.e. the simultaneous duplication of multiple genes under different conditions in separate reaction wells. Compared with the large-scale PCR system, it is greatly advantageous for fast diagnosis of multiple infectious diseases. Multiplex PCR amplification of two DNA segments in the same well is also feasible using the proposed micro device. The developed micro PCR chip provides a crucial tool for genetic analysis, molecular biology, infectious disease detection, and many other biomedical applications.  相似文献   

14.

Background

There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy.

Methodology/Principal Findings

In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand.A robust reference comparator set comprising following ‘scrub typhus infection criteria’ (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the ‘gold standard’ indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays.Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96–99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%.

Conclusions/Significance

The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.  相似文献   

15.
To establish a rapid, sensitive and specific diagnostic assay for Hantavirus with microarray techniques, specific primers and probes were designed according to the conservative and specific DNA sequence of 76-118 strain and R22 strain. The probes were spotted on glass slides to form microarrays.The Cy3-1abled single stranded DNA fragments prepared by dissymmetical PCR were hybridized with the probes on the glass slides. The microarrays were scanned and analyzed with a scanner. The results showed that the DNA microarray could detect the different typed DNA of HTN and SEO with adequate specificity and sensitivity. The developed DNA microarray and techniques might be a very useful method for diagnosis and prevention, and could be widely applied in specific pathogens detection ofinfectious diseases such as hemorrhagic fever with renal syndrome.  相似文献   

16.
Enzymatic ligation methods are useful in the diagnostic detection of DNA sequences. Here, we describe the investigation of nonenzymatic phosphorothioate--iodoacetyl DNA chemical ligation as a method for the detection and identification of RNA and DNA. The specificity of ligation on the DNA target is shown to allow the discrimination of a single point mutation with a drop in the ligation yield of up to 16.1-fold. Although enzymatic ligation has very low activity for RNA targets, this reaction is very efficient for RNA targets. The speed of the chemical ligation with an RNA target achieves a 70% yield in 5 s, which is equal to or better than that of ligase-enzyme-mediated ligation with a DNA target. The reaction also exhibits a significant level of signal amplification under thermal cycling in periods as short as 100-120 min, with the RNA or DNA target acting in a catalytic way to ligate multiple pairs of probes.  相似文献   

17.
In situ amplification permits the histological localization of low-copy DNA and RNA targets. However, in many instances it would be useful to know the specific phenotype of the target-containing cell or to ascertain the distribution of a different nucleic acid sequence in the same tissue section. This review describes a methodology that allows co-in situ localization of two nucleic acid targets or a DNA/RNA sequence and a protein in paraffin-embedded, formalin-fixed tissue. The key variable for detection of low-copy RNA targets by RT in situ PCR is optimal protease digestion to permit cDNA target-specific incorporation of the reporter nucleotide. This is achieved via inactivation of nonspecific DNA synthesis by overnight DNase digestion. The key variable for immunohistochemical localization of proteins is to determine the effect of protease digestion on the antigen-based signal intensity. Background for DNA targets by in situ hybridization or, for targets present in 1-10 copies per cell, PCR ISH is dependent primarily on probe concentration and the stringency of the post-hybridization wash. Radioactive 3H-labeled nucleotides permit an excellent distinction with colorimetric signals for co-localization, although two distinct chromogens can in many instances allow successful localization of two different targets.  相似文献   

18.
A loop-mediated isothermal amplification (LAMP) method with a real-time monitoring system was developed for the detection of porcine circovirus type 1 (PCV1) in commercial swine vaccines. This method was highly specific for PCV1. No cross-reaction to porcine circovirus type 2, porcine parvovirus, pseudorabies virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus was observed. The analytical sensitivity of the LAMP for PCV1 DNA was 10 copies/μl in the case of positive recombinant plasmid comparable to that obtained from the nested polymerase chain reaction (nested PCR). Furthermore, 25 commercial swine vaccines were tested by both the LAMP and the nested PCR, and three of them were tested positive for PCV1 DNA. These results indicate that PCV1 DNA can be real-time detected by the LAMP; the method was highly specific, sensitive, and rapid for the detection of PCV1 DNA, particularly in commercial swine vaccines.  相似文献   

19.
A method was developed for the detection of Giardia cysts by using the polymerase chain reaction (PCR) and the giardin gene as the target. DNA amplification by PCR, using giardin DNA as the target, resulted in detection of both live and dead cysts. When giardin mRNA was used as the target, the ability to amplify cDNA by PCR depended on the mode of killing. Cysts killed by freezing were not detected by PCR when giardin mRNA was the target. Cysts killed by heating or exposure to monochloramine, however, gave positive detection signals for both DNA and giardin mRNA targets. The amount of giardin mRNA and total RNA was significantly increased in live cysts following the induction of excystation. Cysts killed by freezing, heating, or exposure to monochloramine did not show a change in RNA content. The detection of the giardin gene by PCR permits a sensitive and specific diagnosis for Giardia spp. Discrimination between live and dead cysts can be made by measuring the amounts of RNA or PCR-amplified product from the giardin mRNA target before and after the induction of excystation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号